Past Forward

Activating The Henry Ford Archive of Innovation

THF Conversations: Autonomous Vehicles - Solving Problems & Driving Changes

February 28, 2021 Think THF, Archive Insight

151148661_10157744295831237_3957531956410905486_o

In honor of National Engineers Week at The Henry Ford, our Curator of Transportation Matt Anderson led a panel (including Michigan Department of Transportation’s Michele R. Mueller, Kettering University’s Kip Darcy, and Arrow Electronics’ Grace Doepker) on the topic of autonomous vehicles. The panel wasn’t able to answer all of the questions asked, so we’ve collected our inquiries for the experts to weigh in on.

If you missed the panel, you can watch the presentation here.

Is the Comuta-Car a copy of The Dale?
Matt: The Dale is a story unto itself. That car (like the company behind it) was considered a fraud, while the Comuta-Car was a much more successful effort to manufacture and market vehicles. The Dale was a three-wheeled car powered by a two-cylinder internal-combustion engine. The Comuta-Car had four wheels and a DC electric motor. The Dale was also considerably larger, measuring 190 inches long to the Comuta-Car's 95 inches. That said, both cars were aimed at economy-minded customers looking for fuel efficiency.

Is there a danger to the vehicle being hacked?
Michele: There is a lot of work around security from all aspects (vehicle, infrastructure, supplier hardware, software, etc.) that put multiple layers of security in place to prevent that.

Kip: System security is a big deal - ensuring vehicle platforms are using the most sophisticated security is vital to building trust for owners and operators.  Over-the-air updates is an important component to ensure the vehicle platform has the latest antivirus/security defenses. Like cell phones, the platform always needs to be secure.

What types of programs/coding is available to protect the confidentiality of the car to only be assigned to the driver?
Michele: The industry has developed and continues to develop things such as personal recognition items (facial features, fingerprint, eye scan, etc.) that would allow this type of driver confidentiality. It has also brought to light concern over law enforcement and emergency responder access if needed in cases of having to impound a vehicle, if the vehicle is in a crash etc. MDOT has worked very diligently with Michigan State Police specifically to meet with industry professionals and talk through these challenges from that perspective and has aided the industry in their development of the technology. MDOT also works with other entities to provide training opportunities to Emergency responders for how to handle these types of vehicles as well as electric vehicles as they become more common on the infrastructure.

Kip: Quite likely that users and owners will give up a fair amount of confidentiality w/technology providers/OEMS when using fully connected vehicles. Like web browsing and mobile phone usage, it will be used to personalize the experience. Flip side - multiple users of a vehicle would have user accounts/profiles like current smart key/fob profiles on vehicles. If someone uses your fob, they may have access to your profile and user data.

How do these cars account for winter driving in states like Michigan?
Michele: A lot of testing goes on with these vehicles in all weather conditions and many of the auto companies and Tier I suppliers have facilities in northern and Upper Peninsula of Michigan to do testing such as this in those conditions. They are run through many weather scenarios rigorously and this is a good use case for why we set up our pilot and deployments in this space as sustainable environments so that regardless of when the weather happens the environment is there to test with.

Kip: As Michele points out, Michigan is an amazing test environment: the combination of extreme weather and infrastructure challenges make for great testing to compliment all of the work done in California, Arizona, and Nevada.

How do you overcome the liability issue? If an individual is in a crash due to driver’s error, it’s their fault. If an individual is in a crash in an autonomous car, is the manufacture at fault?
Michele: This is a very hot topic with a lot of lawyers, legal teams, insurance entities, etc., all part of the conversation. That determination is not out yet and I believe we have a bit to go before it is resolved. I do know that the reduction of crashes is drastically reduced by taking the human error factor out which automatically leads to a reduction in injuries and fatalities.

Kip: I see the convergence of two issues; driver liability and product liability.  Currently need a licensed driver in a vehicle - fault pinned to the driver (however, MI is no-fault) Malfunctioning systems would be a product liability issue - such as a possible design or manufacturing defect.  In a future w/L4/L5 fully automated vehicles w/o a licensed driver, the insurance regulations will need to change. NAIC National Auto Insurance Commissioners has resources on the topic.

When do you think autonomous vehicles will become widely used in our everyday life?
Michele: I personally believe that a fully Level 5 automated vehicle being widely used with saturation is 15-20 years out. We have automated vehicles today with different feature sets and they are showing benefits.  There will be a transition period and a mixed use for a quite a while yet.

Kip: Based on adoption studies done before the pandemic, I would concur: 2045 for 50% adoption rate for L4/L5. Important to remember the average fleet age in the US: 11- to 12-years old; a lot of old cars on the road.

You mentioned how highways impacted cities and Black communities. You could flip that question and ask about how autonomous vehicles will impact rural communities, especially in areas where cities are few and far between and infrastructure not as important. Is there an incentive to go automated in independent, rural America?
Michele: The speculation is that you will see some sort of incentivization at some point to adapt the technology in your vehicle whether new or after market. This may come as the technology and infrastructure are more advanced and refined for implementation, nobody knows for sure what that will look like however, it is very feasible. MDOT has done testing with industry partners in rural areas and to be honest there are some differences but not many, we currently do a lot of testing and deployments in the denser areas just due to the location of the industry partners doing development and testing, the closer they are to those platforms the more testing, tweaks, retesting that can be done for a lower cost. In the decision-making process for infrastructure standards and specifications we are looking at the entire State of Michigan for setting those and as upgrades and projects are done all areas are putting in the infrastructure to be ready for the technology as the needs and demand spreads.

Additional Resources: Please check out the following links to learn more.

Employment with the State of Michigan
State of Michigan Job Alerts
Application Process
Recruitment Bookmark
First-Time Applicants: How To
Working at MDOT
Internships at MDOT
MDOT: Planning for the Future
MDOT Transportation Technicians
MDOT Transportation Engineers
Engineer Development Program

MDOT - Michigan Department of Transportation

Michigan Department of Transportation – Michigan Department of Transportation is responsible for planning, designing, and operating streets, highways, bridges, transit systems, airports, railroads and ports. Find out more about lane closures, roads, construction, aeronautics, highways, road work and travel in Michigan.

MDOT: 2021 Engineering Week Webpage
Michigan Department of Transportation – 2021 Engineering Week. 2021 Engineering Week. Engineers and technicians work together at MDOT to provide Michigan the highest-value transportation services for ensured safety, economic benefit, and improved quality of life.


 Arrow Electronics: Five Years Out
Arrow Electronics – Welcome to the tangible future. The people who live and work here know that new technologies, new materials, new ideas and new electronics will make life not only different, but better. Not just cheaper, but smarter. Not just easier, but more inspired. Five Years Out is a way of thinking to bridge the gap between what is possible and the practical technologies to make it happen.
Automotive Security
AV Development and Adoption


Kettering University:
Kettering University is a private non-profit STEM university in Michigan. We offer undergraduate and master-level degree programs including fully online master’s degrees. In additional we offer graduate level certificate programs on campus and online.

technology, cars, autonomous technology

Facebook Comments