Past Forward

Activating The Henry Ford Archive of Innovation

Posts Tagged by kate partington

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at the Michigan Department of Transportation (MDOT) and the Michigan Economic Development Corporation (MEDC) tackle questions about the infrastructure of mobility.

Our cars are increasingly "connected," whether for navigation, communication, or entertainment. What challenges does this pose for our current infrastructure, and what improvements are most urgently needed to keep pace with technology?

MDOT:

First, the balance between data-sharing and privacy. The Michigan Department of Transportation leads all our efforts with safety first. Our agency looks to find opportunities to solve modern traffic challenges as cars become increasingly connected with technology that meets the need for navigation, communication, and/or entertainment.

Due to today’s connectivity, MDOT has the means to share data and asset information relevant to roadway users—for example, wrong-way driving alerts and information directly connected to infrastructure, vehicles, and other devices. But as more consumers purchase connected vehicles, there are increased opportunities for exploitation by hackers using cellular networks and/or wi-fi. Therefore, software vulnerabilities, privacy, and other cybersecurity concerns must be addressed as quickly as the technology progresses.

Small electronic device, cord, instruction manual, "quick reference guide," and box for GPS system
Early standalone consumer GPS units, like this 1998 Garmin “Personal Navigator” system, had limited or no integration with the rest of a car. As vehicles become increasingly connected, potential safety and security concerns increase too. / THF150113

Second, leaving room for solutions, opportunities, and collaboration. It is imperative to remain technology-agnostic and interoperability is critical. Today’s vehicles meet many needs and should be able to work with many devices and operating systems.

A recent decision by the Federal Communications Commission (FCC) to reallocate a portion of the radio spectrum from public safety to commercial use has been the most significant impact to date. This introduces the potential of not having enough spectrum to operate the technology to improve safety and mobility. Continued collaboration with other governmental agencies, private companies, and academia leads to a safer, better user experience for motorists.

Yellow record cover with text and image of front of large truck
Challenges in allocating limited radio spectrum frequencies aren’t new. In 1977, at the height of the CB radio craze, the FCC yielded to popular demand by expanding the number of citizens band channels from 23 to 40. / THF106547

MEDC:

The increase in connectivity between vehicles challenges our current infrastructure because infrastructure upgrades are not able to happen as quickly as the vehicle technology is advancing. First, we need to make sure our current infrastructure is maintained and suitable for the vehicles we do have on the roads. The next improvements would be continuing to implement vehicle-to-everything (V2X) technology on our roadways, and to explore connected infrastructure projects, such as a public-private partnership to establish and manage a connected roadway corridor.

Navigation apps like Waze leverage user data and intelligent transportation systems (ITS) to provide real-time updates, helping drivers avoid construction and other traffic congestion. Does MDOT have its own advanced technologies and services to enhance these platforms and keep Michigan drivers safe and on the move?

MDOT:

MDOT utilizes a variety of methods to reach out to our citizens to provide traveler information. Drivers can access our Mi-Drive link for detailed information regarding construction projects, etc. Our traffic operations centers post information for incidents and rerouting on our dynamic message signs located on our freeway system.

Square-shaped narrow white plastic box with text "wazebeacon"
This 2018 Waze beacon, on display in Collecting Mobility through January 22, 2022, eliminated dead spots in GPS navigation by placing battery-powered beacons in tunnels where GPS satellite signals couldn't reach. / THF188371

As vehicles and roadways transition to the future state of connectivity, there will continue to be many vehicles on the road that are not equipped with these technologies. How will the new systems accommodate older or non-connected vehicles?

MDOT:

MDOT works with industry partners on that transition, and as new technologies are implemented, we are always considering the users and amount of saturation for vehicles to take advantage of them. For example, MDOT provides information on our dynamic message boards, and we can also provide that information into connected vehicles. It would be difficult to remove those dynamic message signs currently, as the number of connected vehicles on the road today is not high enough. The technologies will become more prevalent as drivers get new vehicles and aftermarket technologies are implemented on older vehicles. Systems already exist on vehicles coming off the assembly line that are improving safety, such as blind spot and forward collision warnings, and adaptive cruise control.

Car in distance on dirt road between fields; a horse-drawn carriage is pulled over on one side
The coming transitional period, in which connected cars share roads with non-connected vehicles, will mirror the mobility transition of the early 20th century, when horse-drawn vehicles coexisted with automobiles. / THF200129

MEDC:

It’s important to note that connected roadways will not cancel out the use of non-connected vehicles—there will be a transitional period where a lot of non-connected vehicles will use aftermarket Internet of Things (IoT) solutions that allow them to take advantage of the connected roadways. The non-connected vehicles may not be able to take advantage of all the benefits of the connected roadways, like communication and navigation, but there will be solutions to upgrade their vehicles to accommodate them.

We've long depended on gasoline taxes to finance road construction and maintenance. But as the percentage of electric vehicles (EVs) grows, gas tax revenues decrease. Should we be looking at new funding methods? What alternatives should we consider?

MDOT:

This will be an important public policy discussion going forward. In Michigan, road funding legislation signed by then-Governor Rick Snyder in 2015 included increased registration fees for EVs. Roads in Michigan are primarily funded through registration fees and fuel taxes. More creative mechanisms will be necessary to continue to maintain our roads and bridges. Legislation in Michigan tasked MDOT with conducting a statewide tolling study, which is ongoing. New public-private partnerships will be vital to creating and maintaining charging infrastructure. 

Small white wooden building with sign on side, shaded by a tree
Gas taxes won’t pay for roads in an electric-vehicle world. This modern problem could be solved in part with an ancient solution: toll roads. Learn more about highway funding challenges in our “Funding the Interstate Highway System” expert set. / THF2033

States could look to local governments and other state agencies to encourage charging infrastructure inclusion in building codes and utility company build-out plans. There is also uncertainty at the moment around what federal programs might be created as a result of the draft infrastructure plan being debated by Congress.

MEDC:

Yes, absolutely. With more electric vehicles coming to market, there is an opportunity for more creative ways to finance roads while ensuring no more of a burden on electric vehicle drivers than on gasoline vehicle drivers. Some alternatives include a VMT (vehicle miles traveled)–based fee that electric vehicle owners could opt into. The fee would be based on a combination of the vehicle’s metrics and miles driven, to accurately reflect road usage and the gas taxes that gasoline vehicle owners pay. This is also a policy recommendation in the Michigan Council on Future Mobility and Electrification’s annual report, which will be published in October 2021.

In the 1950s, there were experiments with guidewire technology that enabled a car to steer itself by following a wire embedded in the pavement. Today we're experimenting with roads that can charge electric vehicles as they travel. Is it time to rethink the road itself—to connect it directly with our cars?

MDOT:

Thankfully, infrastructure continues to become “smarter” due to intelligent transportation systems, smart signals, and more—for example, the simplification of the driving environment for connected autonomous vehicles (CAVs). In 2020, MDOT established a policy to increase the width of lane lines on freeways from four to six inches to support increasing use of lane departure warning and lane keeping technologies.

Page with text and blue bars at top and bottom; black-and-white drawing showing the back of a person driving a car on a freeway (as if the viewer was in the backseat)
Our roadways evolve with our technologies. This 1956 brochure promotes the proposed Interstate Highway System—which was then a brand-new idea, not yet implemented. / THF103981

Similarly, the roadway can be evolved to optimize travel in EVs. The development of a wireless dynamic charging roadway in Michigan is a step forward in addressing range anxiety and will accelerate better understanding of infrastructure needs moving forward. This inductive vehicle charging pilot will deploy an electrified roadway system that allows electric buses, shuttles, and vehicles to charge while driving. The pilot will help to accelerate the deployment of electric vehicle infrastructure in Michigan and will create new opportunities for businesses and high-tech jobs.

Infographic with text, line drawings, and photograph in background
Some of Michigan’s “smart infrastructure.” / Infographic courtesy MDOT

MEDC:

It is time to rethink the road itself—as new advancements in mobility and electrification roll out for vehicles, it’s only natural to rethink the infrastructure these vehicles operate on. As computers got smaller and more compact over time, so did their chargers. It’s a similar thing with vehicles and their infrastructure. As vehicles get smarter and more connected, the infrastructure will have to follow suit.


Matt Anderson is Curator of Transportation at The Henry Ford, Michele Mueller is Sr. Project Manager - Connected and Automated Vehicles at Michigan Department of Transportation, and Kate Partington is Program Specialist - Office of Future Mobility and Electrification at Michigan Economic Development Corporation (MEDC). The Michigan Department of Transportation is responsible for Michigan's 9,669-mile state highway system, and also administers other state and federal transportation programs for aviation, intercity passenger services, rail freight, local public transit services, the Transportation Economic Development Fund, and others. The Michigan Office of Future Mobility and Electrification within the MEDC was created in February 2020 to bring focus and unity in purpose to state government’s efforts to foster electrification, with a vision to create a stronger state economy through safer, more equitable, and environmentally conscious transportation for all Michigan residents. See Collecting Mobility for yourself in Henry Ford Museum of American Innovation from October 23, 2021, through January 2, 2022.

autonomous technology, alternative fuel vehicles, Michigan, technology, roads and road trips, cars, by Kate Partington, by Michele Mueller, by Matt Anderson