Past Forward

Activating The Henry Ford Archive of Innovation

Posts Tagged by matt anderson

Black-and-white portrait of man with sideburns wearing jacket or jumpsuit with text and logos

Al Unser, Sr., in 1971. / THF224820

We are saddened by the passing of Al Unser, Sr., on December 9, 2021. Over his nearly 40-year racing career—ranked as one of America’s top drivers for much of it—Unser added immeasurably to his family’s rich legacy in motorsport. He earned 39 wins in national championship races and three national titles. Unser won two overall victories at Pikes Peak. He earned a championship in the IROC series. Most famously, Unser won four times at the Indianapolis 500.

Some families farmed, and some ran small businesses. The Unsers raced. Al’s father and uncles grew up near Pikes Peak, Colorado, where they competed in the celebrated Pikes Peak Hill Climb starting in 1926. Uncle Louis won nine victories there between 1934 and 1953, while father Jerry scored a personal-best third-place finish on the mountain.

Black-and-white photo of man standing in front of racecar, with four younger men kneeling in front of him
An American racing dynasty: Jerry Unser (rear) with his sons (front, left to right) Bobby, Jerry Jr., Louie, and Al. / THF227428

By the time Al was born in 1939 (on the day before Memorial Day, appropriately enough), Jerry and Mary Unser had moved their family to Albuquerque, New Mexico, where Jerry operated a service station on well-traveled Route 66. Like his older brothers Jerry Jr., Louie, and Bobby, Al grew up helping at the station where he was surrounded by cars and racing culture. Jerry Jr. and Louie went to Pikes Peak for the first time as competitors in 1955. Jerry Jr. earned class wins there in 1956 and 1957. He started in the 1958 Indianapolis 500, but was knocked out of contention by a collision on the first lap. The following year, Jerry Jr. was killed in a crash while attempting to qualify for Indy.

Louie earned class victories at Pikes Pike in 1960 and 1961, but multiple sclerosis forced his retirement from competitive driving in 1964. It was Bobby who became “King of the Mountain,” earning 13 wins—including 10 overall victories—at Pikes Peak from 1956 to 1986. Bobby made his mark at Indianapolis too, winning the Indy 500 in 1968, 1975, and 1981.

Black-and-white photo of three men in matching sweatshirts joining hands in front of a car and banner
The Unsers reigned at Pikes Peak, and Al earned overall wins in 1964 and 1965. He posed there with Wes Vandervoort (left) and brother Bobby (right) in 1964. / THF218643

Al launched his own competitive driving career in 1957. Fittingly, his first taste of success came at Pikes Peak. He interrupted his brother Bobby’s successful streak on “America’s Mountain” by claiming the overall victory in 1964. Al then turned in a repeat performance with another overall win in 1965. That same year, he made his debut in the Indianapolis 500. Al finished ninth, ahead of Bobby (who placed nineteenth) but behind Jim Clark and his rear-engine revolution.

People push racecars through a gap between concrete grandstands filled with people as many watch
Al’s Johnny Lightning cars of 1970–71 remain Indy fan favorites. / THF148071

Al scored a second-place Indy 500 finish in 1967 and, the following year, he joined Vel’s Parnelli Jones Racing team and chief mechanic George Bignotti. Al’s first win at the Brickyard came in 1970, when he dominated the race by leading 190 of the 200 laps. Just as he had done at Pikes Peak, Al posted a repeat win at Indy by taking the checkered flag again in 1971. In both years, Al turned heads not just with his performance, but with his distinct blue and yellow cars sponsored by toymaker Johnny Lightning.

Unser notched another Indy 500 win in 1978. That year’s victory was followed later in the season by wins at Pocono Raceway and Ontario Motor Speedway. The trio of checkered flags gave Al the Indy car “Triple Crown”—victories in all three of the 500-mile races on the 1978 calendar.

Man in jumpsuit with wreath around neck stands in a race car waving to the camera with a crowd of people looking on
Al’s 1987 Indy 500 victory made him only the second driver (at the time) to win the race four times. / THF225018

Unser’s fourth Indianapolis 500 win shouldn’t have happened at all—which made the triumph that much sweeter. Al was without a ride heading into the 1987 race. But when Team Penske’s Danny Ongais went into the wall during practice and then withdrew from the race under doctor’s orders, the team offered Unser the chance to take his place. Al was less than a week from his 48th birthday, but he was game for another run at the greatest spectacle in racing. Unser started the race in 20th position but steadily moved toward the front, taking the lead on lap 183. He held off the opposition long enough to take the checkered flag with an average speed of 162.175 mph. At that moment, not only did Al become the second driver to win the Indianapolis 500 four times (after A.J. Foyt), he also became the oldest driver to win the race (beating a record set by his brother Bobby, who’d won in 1981 at age 47).

Al retired from competitive driving in 1994, but not before racing several times against his son, Al Unser, Jr. “Little Al” earned two Indianapolis 500 victories of his own, taking the checkered flag in 1992 and 1994. Altogether, an Unser won the Indy 500 nine times from 1968 to 1994—one-third of the races held in those 26 years!

Page with text and photo of three standing men, one with foot up on a folding chair
For 30 years, Al Unser, Sr., was one of only three drivers to win Indy four times (along with A.J. Foyt and Rick Mears). Helio Castroneves joined the exclusive club in 2021. / THF146847

We join the racing world in mourning the death of Al Unser, Sr. His passing is especially hard coming in the same year that saw the loss of his brother, Bobby, and his nephew (and Bobby’s son), Bobby Unser, Jr. Al’s achievements and his impressive record will endure, as will the incredible legacy of the Unsers of Albuquerque, the first family of American racing.

You can hear Al Unser, Sr., describe his career and accomplishments in his own words on our “Visionaries on Innovation” page here.

Man in red shirt with text and checkered flag logo smiles at camera; out-of-focus race car in background
Al Unser, Sr., in 2009 (photo by Michelle Andonian). / THF62695


Matt Anderson is Curator of Transportation at The Henry Ford.

Henry Ford Museum, Driven to Win, racing, race car drivers, in memoriam, cars, by Matt Anderson

Intricate gold frame with black-and-white image of three men in suits and hats holding lanterns and lunch pails For many 19th-century railroaders, holidays were workdays like any other. / THF286590


As we gather with family and friends to celebrate the holidays this year, many of us will enjoy a day (or several days) away from the job. But for our essential workers, time off may not be an option. For those who do the daily work that makes modern life possible, a holiday is just another day. In the mid-19th century, the railroader was America’s preeminent essential worker. (Don’t get me wrong—railroaders are still essential workers in the early 21st century, but their industry isn’t as prominent in today’s culture.) Trains had to roll, tracks had to be kept clear, and freight had to move—no matter what the calendar said.

Timetable with image of train and text showing train stops and times
The railroad’s timetable was gospel, holiday or not. / THF203346

Mainline railroading was a 24/7 operation. It was possible to shutter most operations at a roundhouse for a day, and railroads could cancel the local trains that served nearby industries, but longer-distance through freight and passenger trains had to keep moving. Stop a train somewhere and you block that track—and all the other trains that need to use it. Before long, the whole system grinds to a halt. (Today’s passenger airlines experience the same problem when bad weather shuts down a hub airport. Delays cascade throughout the entire network. But airlines can “reset” each night when far fewer flights operate. That’s an advantage railroads have never enjoyed.)

Conductors, engineers, fireman, brakemen, and others often spent their holidays either out on the line or bunking in a railroad dormitory far from home, waiting for their next run. And there might be miserable weather to contend with too. In northern states, December meant cold and snow. Consider the plight of a mid-19th-century brakeman. In the days before George Westinghouse’s air brake, the only way to stop a train was to manually set the individual handbrakes on each car. When the engineer gave the signal, brakemen had to scramble along the roofs of the railcars and spin the iron wheels that applied those brakes. It was a dangerous job in fair weather, but it could be deadly when ice and snow made everything slippery. On a windy night, a brakeman might be blown off into a snowbank below—where he hoped his crewmates noticed his absence before the train went too far.

Black-and-white image of two men, one shoveling coal into a large metal furnace and the other leaning out a window
The firebox kept a locomotive’s cab warm throughout the year—a decided advantage in winter. / THF286564

For the engineer and fireman in the locomotive cab, life was somewhat better. They stayed warm even through the coldest winter days due to the heat from the locomotive’s firebox. (There were surely more than a few enginemen who preferred the cold to sweltering summer days, when cab temperatures were hellish.) But there were still challenges. Snow and ice on the rails required extra skill to keep the locomotive’s wheels from spinning when climbing a long grade. Falling snow obscured the track ahead, making it difficult to see signal lights and lanterns—or an unexpected stopped train.

Interior of train car with wooden walls and ceiling and floral upholstered bench seats
Polished passenger cars were aesthetically pleasing. They were also highly combustible, should the coal stove (at lower left) tip over in an accident. / THF176785

Riders on passenger trains also stayed out of the weather, but even they had their struggles. Wooden passenger cars were drafty. In the mid-19th century, heat came from a single coal stove in each car. Inevitably, those seated far from the stove shivered, while those seated nearest to it sweated. Given that cars of this period were heavily varnished and trimmed with any number of flammable fabrics and surfaces, coal stoves also posed a serious fire hazard.

Two of America’s worst railroad disasters involved December fires. On December 18, 1867, an eastbound express train derailed while crossing a bridge near Angola, New York. The last car plummeted off the bridge and its stove came apart, scattering hot coals over the wreckage. Forty-nine people are believed to have died in the wreck—most of them burned in the resulting inferno. Newspapers referred to the carnage as the “Angola Horror.”

Nine years later, another bridge-fire accident occurred at Ashtabula, Ohio. On December 29, 1876, a faulty bridge collapsed under the Pacific Express as the train headed west. This time, 11 passenger cars fell into the chasm and an estimated 92 people lost their lives. Some were killed in the crash itself, but others succumbed to the fire ignited by spilled coals and fueled by wooden wreckage. The “Ashtabula Horror” exceeded that of Angola and would remain America’s deadliest railroad accident for more than 40 years.

Double image of a train on a track surrounded by snow with a number of people nearby
Clearing snow was the most backbreaking task on the railroad in winter. / THF120726

Trains didn’t go anywhere if the track was blocked, so in snowstorms track crews battled fiercely against falling and drifting snow to keep the way clear. Brute force and backbreaking effort were their best tools. Large plows, pushed by powerful locomotives, threw snow clear of the right-of-way. When the crew encountered a particularly deep or stubborn blockage, there was little choice but to back the plow up for some distance, then open the throttle and hit the drift hard and fast. With luck, the plow pushed through and continued on its way, or at least made a sizeable dent before another try. The worst-case scenario had the plow stuck so deep into a drift that it couldn’t be extracted. When that happened, crew members simply had to shovel it, however long it took. Powerful rotary plows—essentially, snowblowers for railroad track—made the job easier when they arrived in the 1880s, but these expensive machines were generally only used on mountain railroads in the American West.

By any measure, winter on the railroad was a miserable season.

Painting of train traveling through snowy mountains as a cowboy on a horse with a packhorse watches from atop a bluff
Artist (and automotive designer) Virgil Exner captured a more romantic vision of winter railroading in this painting from about 1970. / THF36304

Later in the 20th century, as working conditions and passenger safety improved, and as steel coaches and steam heat replaced wooden cars with coal stoves, the railroad found a happier place in our holiday culture. Trains became synonymous with trips back home to visit loved ones, and electric train sets became staples under the Christmas tree—whether as gifts or as decorations. More recently, popular movies like The Polar Express have continued the trend. It may be that there were no holidays on the railroad, but it’s equally true that our holidays wouldn’t be what they are today without it.


Matt Anderson is Curator of Transportation at The Henry Ford.

holidays, trains, winter, travel, railroads, by Matt Anderson

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at the Michigan Department of Transportation (MDOT) and the Michigan Economic Development Corporation (MEDC) tackle questions about the infrastructure of mobility.

Our cars are increasingly "connected," whether for navigation, communication, or entertainment. What challenges does this pose for our current infrastructure, and what improvements are most urgently needed to keep pace with technology?

MDOT:

First, the balance between data-sharing and privacy. The Michigan Department of Transportation leads all our efforts with safety first. Our agency looks to find opportunities to solve modern traffic challenges as cars become increasingly connected with technology that meets the need for navigation, communication, and/or entertainment.

Due to today’s connectivity, MDOT has the means to share data and asset information relevant to roadway users—for example, wrong-way driving alerts and information directly connected to infrastructure, vehicles, and other devices. But as more consumers purchase connected vehicles, there are increased opportunities for exploitation by hackers using cellular networks and/or wi-fi. Therefore, software vulnerabilities, privacy, and other cybersecurity concerns must be addressed as quickly as the technology progresses.

Small electronic device, cord, instruction manual, "quick reference guide," and box for GPS system
Early standalone consumer GPS units, like this 1998 Garmin “Personal Navigator” system, had limited or no integration with the rest of a car. As vehicles become increasingly connected, potential safety and security concerns increase too. / THF150113

Second, leaving room for solutions, opportunities, and collaboration. It is imperative to remain technology-agnostic and interoperability is critical. Today’s vehicles meet many needs and should be able to work with many devices and operating systems.

A recent decision by the Federal Communications Commission (FCC) to reallocate a portion of the radio spectrum from public safety to commercial use has been the most significant impact to date. This introduces the potential of not having enough spectrum to operate the technology to improve safety and mobility. Continued collaboration with other governmental agencies, private companies, and academia leads to a safer, better user experience for motorists.

Yellow record cover with text and image of front of large truck
Challenges in allocating limited radio spectrum frequencies aren’t new. In 1977, at the height of the CB radio craze, the FCC yielded to popular demand by expanding the number of citizens band channels from 23 to 40. / THF106547

MEDC:

The increase in connectivity between vehicles challenges our current infrastructure because infrastructure upgrades are not able to happen as quickly as the vehicle technology is advancing. First, we need to make sure our current infrastructure is maintained and suitable for the vehicles we do have on the roads. The next improvements would be continuing to implement vehicle-to-everything (V2X) technology on our roadways, and to explore connected infrastructure projects, such as a public-private partnership to establish and manage a connected roadway corridor.

Navigation apps like Waze leverage user data and intelligent transportation systems (ITS) to provide real-time updates, helping drivers avoid construction and other traffic congestion. Does MDOT have its own advanced technologies and services to enhance these platforms and keep Michigan drivers safe and on the move?

MDOT:

MDOT utilizes a variety of methods to reach out to our citizens to provide traveler information. Drivers can access our Mi-Drive link for detailed information regarding construction projects, etc. Our traffic operations centers post information for incidents and rerouting on our dynamic message signs located on our freeway system.

Square-shaped narrow white plastic box with text "wazebeacon"
This 2018 Waze beacon, on display in Collecting Mobility through January 22, 2022, eliminated dead spots in GPS navigation by placing battery-powered beacons in tunnels where GPS satellite signals couldn't reach. / THF188371

As vehicles and roadways transition to the future state of connectivity, there will continue to be many vehicles on the road that are not equipped with these technologies. How will the new systems accommodate older or non-connected vehicles?

MDOT:

MDOT works with industry partners on that transition, and as new technologies are implemented, we are always considering the users and amount of saturation for vehicles to take advantage of them. For example, MDOT provides information on our dynamic message boards, and we can also provide that information into connected vehicles. It would be difficult to remove those dynamic message signs currently, as the number of connected vehicles on the road today is not high enough. The technologies will become more prevalent as drivers get new vehicles and aftermarket technologies are implemented on older vehicles. Systems already exist on vehicles coming off the assembly line that are improving safety, such as blind spot and forward collision warnings, and adaptive cruise control.

Car in distance on dirt road between fields; a horse-drawn carriage is pulled over on one side
The coming transitional period, in which connected cars share roads with non-connected vehicles, will mirror the mobility transition of the early 20th century, when horse-drawn vehicles coexisted with automobiles. / THF200129

MEDC:

It’s important to note that connected roadways will not cancel out the use of non-connected vehicles—there will be a transitional period where a lot of non-connected vehicles will use aftermarket Internet of Things (IoT) solutions that allow them to take advantage of the connected roadways. The non-connected vehicles may not be able to take advantage of all the benefits of the connected roadways, like communication and navigation, but there will be solutions to upgrade their vehicles to accommodate them.

We've long depended on gasoline taxes to finance road construction and maintenance. But as the percentage of electric vehicles (EVs) grows, gas tax revenues decrease. Should we be looking at new funding methods? What alternatives should we consider?

MDOT:

This will be an important public policy discussion going forward. In Michigan, road funding legislation signed by then-Governor Rick Snyder in 2015 included increased registration fees for EVs. Roads in Michigan are primarily funded through registration fees and fuel taxes. More creative mechanisms will be necessary to continue to maintain our roads and bridges. Legislation in Michigan tasked MDOT with conducting a statewide tolling study, which is ongoing. New public-private partnerships will be vital to creating and maintaining charging infrastructure. 

Small white wooden building with sign on side, shaded by a tree
Gas taxes won’t pay for roads in an electric-vehicle world. This modern problem could be solved in part with an ancient solution: toll roads. Learn more about highway funding challenges in our “Funding the Interstate Highway System” expert set. / THF2033

States could look to local governments and other state agencies to encourage charging infrastructure inclusion in building codes and utility company build-out plans. There is also uncertainty at the moment around what federal programs might be created as a result of the draft infrastructure plan being debated by Congress.

MEDC:

Yes, absolutely. With more electric vehicles coming to market, there is an opportunity for more creative ways to finance roads while ensuring no more of a burden on electric vehicle drivers than on gasoline vehicle drivers. Some alternatives include a VMT (vehicle miles traveled)–based fee that electric vehicle owners could opt into. The fee would be based on a combination of the vehicle’s metrics and miles driven, to accurately reflect road usage and the gas taxes that gasoline vehicle owners pay. This is also a policy recommendation in the Michigan Council on Future Mobility and Electrification’s annual report, which will be published in October 2021.

In the 1950s, there were experiments with guidewire technology that enabled a car to steer itself by following a wire embedded in the pavement. Today we're experimenting with roads that can charge electric vehicles as they travel. Is it time to rethink the road itself—to connect it directly with our cars?

MDOT:

Thankfully, infrastructure continues to become “smarter” due to intelligent transportation systems, smart signals, and more—for example, the simplification of the driving environment for connected autonomous vehicles (CAVs). In 2020, MDOT established a policy to increase the width of lane lines on freeways from four to six inches to support increasing use of lane departure warning and lane keeping technologies.

Page with text and blue bars at top and bottom; black-and-white drawing showing the back of a person driving a car on a freeway (as if the viewer was in the backseat)
Our roadways evolve with our technologies. This 1956 brochure promotes the proposed Interstate Highway System—which was then a brand-new idea, not yet implemented. / THF103981

Similarly, the roadway can be evolved to optimize travel in EVs. The development of a wireless dynamic charging roadway in Michigan is a step forward in addressing range anxiety and will accelerate better understanding of infrastructure needs moving forward. This inductive vehicle charging pilot will deploy an electrified roadway system that allows electric buses, shuttles, and vehicles to charge while driving. The pilot will help to accelerate the deployment of electric vehicle infrastructure in Michigan and will create new opportunities for businesses and high-tech jobs.

Infographic with text, line drawings, and photograph in background
Some of Michigan’s “smart infrastructure.” / Infographic courtesy MDOT

MEDC:

It is time to rethink the road itself—as new advancements in mobility and electrification roll out for vehicles, it’s only natural to rethink the infrastructure these vehicles operate on. As computers got smaller and more compact over time, so did their chargers. It’s a similar thing with vehicles and their infrastructure. As vehicles get smarter and more connected, the infrastructure will have to follow suit.


Matt Anderson is Curator of Transportation at The Henry Ford, Michele Mueller is Sr. Project Manager - Connected and Automated Vehicles at Michigan Department of Transportation, and Kate Partington is Program Specialist - Office of Future Mobility and Electrification at Michigan Economic Development Corporation (MEDC). The Michigan Department of Transportation is responsible for Michigan's 9,669-mile state highway system, and also administers other state and federal transportation programs for aviation, intercity passenger services, rail freight, local public transit services, the Transportation Economic Development Fund, and others. The Michigan Office of Future Mobility and Electrification within the MEDC was created in February 2020 to bring focus and unity in purpose to state government’s efforts to foster electrification, with a vision to create a stronger state economy through safer, more equitable, and environmentally conscious transportation for all Michigan residents. See Collecting Mobility for yourself in Henry Ford Museum of American Innovation from October 23, 2021, through January 2, 2022.

autonomous technology, alternative fuel vehicles, Michigan, technology, roads and road trips, cars, by Kate Partington, by Michele Mueller, by Matt Anderson

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at the University of Michigan, donors of the Navya Autonom® driverless shuttle bus in the exhibit, tackle questions about autonomous vehicles.


The Mcity shuttle project was less about autonomous vehicle (AV) technology than it was about human psychology. Why is it important to understand our current attitudes and comfort levels with self-driving vehicles?

Self-driving vehicles promise a better world for all of us by making roads safer, reducing fuel use, and providing more equitable, more accessible mobility options to more people. None of those benefits can be realized, however, if the public does not trust fully automated vehicles or is afraid to ride in them.

When the Mcity Driverless Shuttle launched in June 2018, consumer trust in automated vehicles was declining in the wake of two fatal crashes involving partially automated vehicles in Arizona and California. Mcity wanted to better understand how consumer attitudes about self-driving vehicles might be affected if they were able to experience the technology first-hand.

Squat blue van with large glass windows all the way around and doors slid open; text and graphics on side
Navya Autonom® Driverless Shuttle Bus, used on the University of Michigan's North Campus and Mcity Test Facility, 2017, now in the collections of The Henry Ford and on exhibit in Collecting Mobility in Henry Ford Museum of American Innovation until January 2, 2022. / THF188013


Mcity worked with global market research firm J.D. Power to survey shuttle riders and non-riders—bicyclists, pedestrians, drivers of other vehicles—about their experience. By the time Mcity’s research wrapped up in December 2019, consumer sentiment nationally remained weak, according to separate surveys published in early 2020 by AAA and J.D. Power. But Mcity Driverless Shuttle survey results showed that 86 percent of riders trusted the technology after riding in the shuttle, as did 67 percent of nonriders surveyed.

Understanding the role of public trust and acceptance is essential to widespread adoption of new mobility technologies.

Self-driving cars may be the most disruptive mobility technology since the car itself. They will affect every aspect of our century-long relationship with the automobile. What can we do to ease the transition?

We must help consumers better understand the potential of this disruptive technology to improve the quality of their day-to-day life, as well as society as a whole. One way to do that is through exhibits like Collecting Mobility at The Henry Ford.

What we did not have at the dawn of the automotive age a century ago was the myriad ways to communicate that are at our fingertips today. On-demand multimedia content produced and shared by industry, government, academia, media, and other organizations teaches the public about self-driving technologies and their risks and benefits as they evolve, helping to smooth the transition to a new way of moving people and goods.

Continue Reading

communication, research, technology, by Greg McGuire, by Matt Anderson, cars, autonomous technology

Museum display with open car with mannequin behind wheel; other displays visible nearby
The original “Sweepstakes,” on exhibit in Driven to Win: Racing in America in Henry Ford Museum of American Innovation.


Auto companies often justify their participation in auto racing by quoting the slogan, “Win on Sunday, sell on Monday.” When Henry Ford raced in “Sweepstakes,” it was a case of win on Sunday to start another company on Monday. On October 10, 2021, we commemorate the 120th anniversary of the race that changed Ford’s life—and ultimately changed the course of American automotive history.

In the summer of 1901, things were not going well for Henry. His first car company, the Detroit Automobile Company, had failed, and his financial backers had doubts about his talents as an engineer and as a businessman. Building a successful race car would reestablish his credibility.

Ford didn’t work alone. His principal designer was Oliver Barthel. Ed “Spider” Huff worked on the electrical system, Ed Verlinden and George Wettrick did the lathe work, and Charlie Mitchell shaped metal at the blacksmith forge. The car they produced was advanced for its day. The induction system was a rudimentary form of mechanical fuel injection, patented by Ford, while the spark plugs may have been the first anywhere to use porcelain insulators. Ford had the insulators made by a Detroit dentist.

Side view of very basic open automobile
1901 Ford "Sweepstakes" Race Car. / THF90168

The engine had only two cylinders, but they were huge: bore and stroke were seven inches each. That works out to a displacement of 538 cubic inches; horsepower was estimated at 26. Ford and Barthel claimed the car reached 72 miles per hour during its road tests. That doesn’t sound impressive today, but in 1901, the official world speed record for automobiles was 65.79 miles per hour.

Ford entered the car in a race that took place on October 10, 1901, at a horse racing track in Grosse Pointe, Michigan. The race was known as a sweepstakes, so “Sweepstakes” was the name that Ford and Barthel gave their car. Henry’s opponent in the race was Alexander Winton, who was already a successful auto manufacturer and the country’s best-known race driver. No one gave the inexperienced, unknown Ford a chance.

When the race began, Ford fell behind immediately, trailing by as much as 300 yards. But Henry improved his driving technique quickly, gradually cutting into Winton’s lead. Then Winton’s car developed mechanical trouble, and Ford swept past him on the main straightaway, as the crowd roared its approval.

Early open automobile on street with one man behind wheel and another crouching on running board
Henry Ford behind the wheel of his first race car, the 1901 "Sweepstakes" racer, on West Grand Boulevard in Detroit, with Ed "Spider" Huff kneeling on the running board. / THF116246

Henry’s wife, Clara, described the scene in a letter to her brother: “The people went wild. One man threw his hat up and when it came down he stamped on it. Another man had to hit his wife on the head to keep her from going off the handle. She stood up in her seat ... screamed ‘I’d bet $50 on Ford if I had it.’”

Henry Ford’s victory had the desired effect. New investors backed Ford in his next venture, the Henry Ford Company. Yet he was not home free. He disagreed with his financiers, left the company in 1902, and finally formed his lasting enterprise, Ford Motor Company, in 1903.

Ford sold “Sweepstakes” in May of 1902, but eventually bought it back in the 1930s. He had a new body built to replace the original, which had been damaged in a fire, and he displayed the historic vehicle in Henry Ford Museum of American Innovation. Unfortunately, Ford did not keep good records of his restoration, and over time, museum staff came to believe that the car was not an original, but a replica. It was not until the approach of the 1901 race’s 100th anniversary that the car was closely examined and its originality verified. Using “Sweepstakes” as a pattern, Ford Motor Company built two running replicas to commemorate the centennial of its racing program in 2001.

Ford gifted one of the replicas to us in 2008. That car is a regular feature at our annual Old Car Festival in September. Occasionally, it comes out for other special activities. We recently celebrated the 120th anniversary of the 1901 race by taking the replica to the inaugural American Speed Festival at the M1 Concourse in Pontiac, Michigan. The car put on a great show, and it even won another victory when it was awarded the M1 Concourse Prize as a festival favorite.

Man sits in boxy open early car on racetrack; a woman stands nearby being filmed by a cameraman
The “Sweepstakes” replica caught the attention of Speed Sport TV pit reporter Hannah Lopa at the 2021 American Speed Festival. / Photo courtesy Matt Anderson

The original car, one of the world’s oldest surviving race cars, is proudly on display at the entrance to our exhibit Driven to Win: Racing in America presented by General Motors. You can read more about how we developed that display in this blog post.

Specifications

Frame: Ash wood, reinforced with steel plates

Wheelbase: 96 inches
Weight: 2,200 pounds
Engine: 2-cylinder, horizontally opposed, water cooled
Bore: 7 inches; Stroke: 7 inches; Displacement: 538 cubic inches (8.8 liters)
Horsepower: 26 @ 900 rpm (estimated)
Drivetrain: 2-speed planetary transmission, with reverse; chain drive to rear axle

 


Bob Casey is Former Curator of Transportation at The Henry Ford. This post was adapted from our former online series “Pic of the Month,” with additional content by Matt Anderson, Curator of Transportation at The Henry Ford.

#Behind The Scenes @ The Henry Ford, Michigan, making, design, Henry Ford, race car drivers, Henry Ford Museum, Driven to Win, racing, race cars, car shows, cars, by Matt Anderson, by Bob Casey

Woman in yellow coat and hat sits behind the wheel of an open car as a man in a vest and straw boater hat stands nearby
“Women at the Wheel,” like the duster-clad driver at the controls of this 1907 Cadillac Model K, were spotlighted at this year’s Old Car Festival.


After a longer-than-usual pause, Old Car Festival returned to Greenfield Village on September 11–12, 2021. Our celebration of early American motoring included more than 700 registered cars, trucks, motorcycles, and bicycles dating from the 1890s to 1932.

Each year we shine our spotlight on a particular make, model, or theme. For 2021, we celebrated “women at the wheel” in commemoration of the 101st anniversary of the ratification of the 19th Amendment, which gave American women the right to vote. The automobile played a significant part in the fight for women’s suffrage. Cars expanded the range and reach of suffragists, allowing them to spread their message to smaller villages and hamlets located away from railroads. The automobile also provided a prominent mobile platform on which to hang signs and banners, and a traveling stage from which to make speeches and calls to action.

Three women in historic clothing and hats sit and stand by/on a black car
Ford Motor Company advertisements promoted the Model T as a source of freedom for American women.

From the start, automakers appealed specifically to women with targeted advertisements and booklets. Makers of early electric cars made a special point of advertising to well-to-do female buyers. Unlike early gasoline cars, electrics were clean, quiet, and required no crank starting or gear shifting. But many women weren’t bothered in the least by the gasoline car’s disadvantages. Alice Huyler Ramsey drove a gas-powered Maxwell across the United States in 1909, becoming the first woman to make the coast-to-coast road trip.

Small, largely open two-seater early automobile parked in front of a red brick building with white columns
This 1912 Baker Electric was used by five First Ladies of the United States. / THF67884

We celebrated women at the wheel with a very special 1912 Baker Electric Victoria. It was purchased for use at the White House by President William Howard Taft and driven by First Lady Helen Taft. When the Tafts left, the Baker stayed behind and was used by four subsequent First Ladies: Ellen Wilson, Edith Wilson, Florence Harding, and Grace Coolidge. The Baker was retired in 1928 and, shortly thereafter, made its way to The Henry Ford. Guests who made their way to The Lodge at Christie & Main saw the Baker on display alongside our 1922 Detroit Electric, and our replicas of Henry Ford’s 1896 Quadricycle and his 1901 “Sweepstakes” race car.

People wearing historical clothing dance in couples in a street as people look on from the sidelines
Dancing under the streetlights, to the music of the River Raisin Ragtime Review, capped off Saturday evening.

Show participants and guests enjoyed a variety of activities built around the three decades represented by Old Car Festival’s vehicles. From the 1900s, we had a group of aged Civil War veterans enjoying a Grand Army of the Republic picnic. From the 1910s, we had a Ragtime Street Fair with music and dancing up and down Washington Boulevard. We had a few American doughboys stationed near Cotswold Cottage as well, lest we forget the Great War and its impact on daily life and industrial production. We commemorated the Roaring ’20s with a community garden party near the Bandstand, and—in keeping with our theme—with a presentation by historian Joseph Boggs on the “New Woman,” who challenged traditional gender norms during that exciting decade.

Man in a blue shirt and khakis holding a microphone gestures to an old-fashioned open car with two people in it, as spectators look on from the side
Expert narrators commented on cars, like this rare 1907 Richmond Merry Widow built by Wayne Works, during Pass-in-Review.

Naturally, those who came for the cars weren’t disappointed. We had everything from Auburns to Willys-Knights parked on every patch of open grass in Greenfield Village. As usual, our team of expert historians was on hand to narrate Pass-in-Review parades that included everything from 19th-century bicycles (brought by the always entertaining Michigan Wheelmen) to commercial trucks, wreckers and depot hacks. (If you weren’t able to see the Pass-in-Review in person, or would like to catch something again, you can watch the early vehicles, commercial vehicles, and bicycles parades on our Facebook page.) We finished off on Saturday evening with the gaslight tour. Anyone who’s experienced it will agree that watching those early autos parade through the village with their flickering gas and early electric lamps is a magical sight.

Low-angle photograph of an old-fashioned largely open maroon car exudes steam as spectators look on
Old Car Festival attracts a variety of motive power, but steam cars like this 1909 White Model O are always a hit.

There’s just something special about Old Car Festival. Several participants have told me that the show is the highlight of the year for them—bigger than birthdays and holidays. I think we all found a little extra joy this time out, resuming a beloved tradition that’s been a part of Greenfield Village for 70 years. We’ll look forward to seeing all our friends again in 2022.


Matt Anderson is Curator of Transportation at The Henry Ford.

voting, women's history, by Matt Anderson, events, Greenfield Village, Old Car Festival, car shows, cars

Black limousine parked outside a red brick buildingTHF172232

 

Fit for the pope, perfect for a parade!


Ford Motor Company was approached by the Vatican in 1965 to provide a vehicle in which to transport Pope Paul VI during a visit to New York City that October. It was an unprecedented occasion—no sitting pope had ever visited the United States before—and Ford was determined to meet the challenge. The automaker approached George Lehmann and Bob Peterson of Chicago. The two men had specialized in “stretching” and customizing Lincoln Continentals since 1962, and their firm had earned a reputation for the high quality of its work. Lehmann-Peterson did not disappoint, rushing a special car to completion in fewer than two weeks.

The papal Lincoln was lengthened to 21 feet (from the standard 18). Step plates and handrails were added for security personnel. Additional seats, arranged in a vis-à-vis (i.e., face-to-face) layout, were placed in the rear compartment. Supplemental interior lighting and a public address system allowed the pontiff to be seen and heard by the crowds, and an adjustable seat—capable of being raised several inches—further improved his visibility. A removable roof panel and added windscreen allowed the pope to stand and wave when conditions permitted.

Man in robe and skullcap stands in a limousine, waving, in a dense crowd of people
Pope Paul VI Pictured Visiting New York in 1965 / THF128756

Pope Paul VI spent a whirlwind 14 hours touring New York on October 4, 1965. He gave a blessing at St. Patrick’s Cathedral, met with President Lyndon Johnson at the Waldorf Astoria hotel, addressed the UN General Assembly, and led an outdoor mass at Yankee Stadium. The pontiff ended his tour with a visit to the Vatican exhibit at the New York World’s Fair.

The modified Lincoln returned to Chicago where it served as a city parade car for visiting dignitaries. In 1968, the Vatican called once again, this time requesting the car’s use during a papal visit to Bogotá, Colombia. The car again performed flawlessly, despite Bogotá’s high altitude and the engine modifications made to the vehicle as a result.

Parade with people standing in an open car, waving; uniformed officers walking alongside; and confetti and tickertape in the air
Apollo 13 Astronauts Jack Swigert and Jim Lovell in a Parade, Chicago, Illinois, May 1, 1970 / THF288386

The car went back to Chicago and soon carried a new series of dignitaries. Apollo 8 astronauts Frank Borman, Jim Lovell, and William Anders—the first men to orbit the Moon—were paraded in the car on a visit to the Windy City in January 1969. Seven months later, Apollo 11 astronauts Neil Armstrong, Buzz Aldrin, and Michael Collins enjoyed a similar honor. The crews of Apollo 13 and Apollo 15 would later have their own parades in the Lincoln.

Continue Reading

convertibles, space, popular culture, limousines, Ford Motor Company, cars, by Matt Anderson

Drab-green military jeep

THF90487

The 1943 Willys-Overland Jeep above, currently on exhibit in Driving America in Henry Ford Museum, represents the millions of vehicles, aircraft, and military items produced by American automakers during World War II. With many men fighting overseas, women joined the workforce in unprecedented numbers. Ford’s Willow Run plant, which produced B-24 bomber airplanes, showed just how important these women were to America’s war effort.

Red, white, and blue line illustration of woman riveting airplane parts; also contains text
The character “Rosie the Riveter” is celebrated in this sheet music from 1942. / THF290068

More than 42,000 people worked at Willow Run. Approximately one-third were women. Riveting was an essential craft there—each B-24 had more than 300,000 rivets. The skilled women who accomplished this work at Willow Run and elsewhere inspired the symbolic character “Rosie the Riveter.” Women also served in clerical and support staff positions at the plant. Women and men earned the same pay for the same work.

Three women work inside large, oval metal shapes
Real-life Rosies rivet B-24 tail cones at Ford’s Willow Run Bomber Plant, June 1944 / THF272701

Willow Run produced 8,685 B-24 bombers. The plant captured the public’s imagination, with Rosie the Riveter appearing on government-sponsored posters and magazine ads, encouraging more women to join the war production effort. Rosies built plenty of Jeeps, too. Willys-Overland manufactured 380,000 of them, and women and men at Ford built another 279,000 Jeeps, identical to the Willys models, at six plants across the country.

Page with text and images of engines and military vehicles
Ford Motor Company humble-bragged about its wartime production, including Jeeps, tanks, B-24 bombers, and more, in this 1943 ad. / THF93700

Altogether, the women and men who worked in American automotive plants during World War II built 4 million engines, 2.8 million tanks and trucks, and 27,000 aircraft—fully one-fifth of the country’s military materials. Many women came to enjoy the independence and economic freedom provided by their jobs. But, when men returned at war’s end, the same government that called women to the factories now encouraged them to go back to working in the home, so men could reclaim factory jobs.

The women who labored in wartime factories were essential to America’s Arsenal of Democracy. They made Rosie the Riveter into an enduring feminist icon—and a powerful symbol of women’s contributions to the American economy.


This post was adapted from a stop on our forthcoming “Hidden Stories of Manufacturing” tour of Henry Ford Museum of American Innovation in the THF Connect app, written by Matt Anderson, Curator of Transportation at The Henry Ford. To learn more about or download the THF Connect app, click here.

Michigan, airplanes, Driving America, THF Connect app, by Matt Anderson, Ford workers, Ford Motor Company, women's history, World War II, Henry Ford Museum

Seated man with two women standing behind him

Mose Nowland, with wife Marcia and daughter Suzanne, at The Henry Ford in June 2021.

The Henry Ford lost a dear friend and a treasured colleague on August 13, 2021, with the passing of Mose Nowland. When he joined our Conservation Department as a volunteer in 2012, Mose had just concluded a magnificent 57-year career with Ford Motor Company—most of it in the company’s racing program—and he was eager for something to keep himself occupied in retirement. We soon discovered that “retire” was just about the only thing that Mose didn’t know how to do.

To fans of Ford Performance, Mose was a legendary figure. He joined the Blue Oval in 1955 and, after a brief pause for military service, he spent most of the next six decades building racing engines. Mose led work on the double overhead cam V-8 that powered Jim Clark to his Indianapolis 500 win with the 1965 Lotus-Ford. Mose was on the team behind the big 427 V-8 that gave Ford its historic wins over Ferrari at Le Mans—first with the GT40 Mark II in 1966 and then again with the Mark IV in 1967. And Mose was there in the 1980s when Ford returned to NASCAR and earned checkered flags and championships with top drivers like Davey Allison and Bill Elliott.

Black-and-white photo of man with a car engine
Mose with one of his creations during Ford’s Total Performance heyday.

Following his retirement, Mose transitioned gracefully into the role of elder statesman, becoming one of the last remaining participants from Ford’s glory years in the “Total Performance” 1960s. Museums and private collectors sought him out with questions on engines and cars from that era, and he was always happy to share advice and insight. Mose’s expertise was exceeded only by his modesty. He never claimed any personal credit for Ford’s racing triumphs—he was just proud to have been part of a team that made motorsport history. Mose was able to see that history reach a wider audience with the success of the recent movie Ford v Ferrari.

Continue Reading

Ford workers, racing, race cars, philanthropy, Old Car Festival, Model Ts, Mark IV, making, in memoriam, Henry Ford Museum, Greenfield Village, Ford Motor Company, engines, engineering, collections care, cars, by Matt Anderson, #Behind The Scenes @ The Henry Ford

Locomotive on railroad tracksBaldwin "Consolidation" Steam Locomotive, 1909 / THF91583

Locomotives like the 1909 Baldwin “Consolidation” Steam Locomotive, currently on exhibit in Henry Ford Museum of American Innovation, were designed to haul heavy freight trains at relatively slow speeds: a perfect example of the kind of anonymous motive power designed to haul apparently unremarkable material. This example was built for the Bessemer and Lake Erie (B&LE), an Andrew Carnegie–owned railroad connecting the port of Conneaut, Ohio, on Lake Erie with Bessemer on the outskirts of Pittsburgh, Pennsylvania. Traffic on the B&LE consisted almost exclusively of southbound iron ore trains and northbound coal trains—a great example of an apparently modest connector railroad playing a limited but utterly crucial role in a nationally important heavy industry.

The B&LE locomotive used a 2-8-0 wheel arrangement—two pilot wheels and eight driving wheels, but no trailing wheels under the cab. One of the first locomotives of this type was ordered in 1866 by Pennsylvania’s Lehigh and Mahony Railroad and named Consolidation. In time, that engine’s formal name came to describe any steam locomotive of the 2-8-0 design.

Visually, the B&LE locomotive stands in stark contrast to the “Sam Hill,” just 50 years its senior: no pinstriping to refresh, no bright paintwork to keep clean, no brass to keep polished—in fact, no superfluous details whatsoever. This is practical, brute technology designed for a single purpose, maintenance kept to fundamentals, and aesthetics of no account whatsoever. While its technological origins lie in the confident improvisations of the 19th century, the overall design of locomotives in this period was increasingly informed by a better understanding of scientific principles.


This post is adapted (with additional new material by Matt Anderson, Curator of Transportation at The Henry Ford) from an educational document from The Henry Ford titled “Transportation: Past, Present, and Future—From the Curators.”

 

railroads, Henry Ford Museum, by Matt Anderson