Past Forward

Activating The Henry Ford Archive of Innovation

Posts Tagged alternative fuel vehicles

Medium-skin tone man in a blue suit stands in front of a corrugated white metal wall Corey Williams, Dearborn Truck Plant Manager, will tell you that the culture at the plant where the F-150 is built is one of a kind. / Photo by Nick Hagen


Corey Williams has been a part of the Dearborn Truck Plant management team for nearly four years, promoted to plant manager in January 2021, and he’s worked at many Ford facilities in a variety of management positions over the 25-plus years he’s been with Ford. He’ll tell you with conviction that the Dearborn Truck Plant, where the Ford F-150 is built and The Henry Ford’s Ford Rouge Factory Tour welcomes thousands of visitors a year, is unlike anywhere else in the world.

“Every Ford plant has the same goals, metrics and objectives—we all want to deliver the best, highest-quality product to the customer that we can,” said Williams. “But at Dearborn Truck, the culture is different. And when I say different, I mean everyone here understands that we are building America’s bestselling truck and the sense of pride in that is like no other.”

“Everybody knows that we are leaders, never followers,” he added. “That if it can be done, it will be done at DTP [Dearborn Truck Plant]—at not only the highest rate and volumes but with the greatest efficiency.”

Partially assembled truck cabs on an assembly line; a person works on one in the distance
Ford F-150 Truck Assembly at the Dearborn Truck Plant at the Ford Rouge Complex

That attitude and mental mantra fit perfectly with Williams’ persona. He’s not afraid to admit he’s an ultracompetitive guy who feeds off having to face the next challenge.

“I’ve been a sports guy my entire life,” he said. “I love to compete and like the idea of a team—the collaborative part of it and how you have to work together toward a common goal.”

And when asked about the new set of players—vehicles as well as workers—that are now ready to call the Ford Rouge Complex home along with Dearborn Truck Plant, Williams couldn’t be more excited. In 2022, the new Rouge Electric Vehicle Center is slated to open, employing hundreds of new hires and manufacturing the all-new battery-electric F-150. “Not a day goes by that people don’t ask me about our new hybrid, the EV center, and electric truck—the buzz and amazement just grows,” said Williams. “It’s a huge step in continuing our truck leadership and dominance. We are changing the game.”

Play to Work


Gameboard, box top, and box bottom filled with cards and game pieces
Staff from Ford Motor Company and The Henry Ford trace some of their interest in STEM and manufacturing to childhood television, toys, and games, like this 1960s Clue set in our collection. / THF188744

We asked Corey and other members of Ford Motor Company’s vehicle launch team and The Henry Ford’s Ford Rouge Factory Tour what games, TV shows, toys, etc., they remember growing up that helped spark their interest in STEM and manufacturing.

Corey Williams, Plant Manager at Ford: Playing team sports in his younger years is a key precursor to his manufacturing management skills today. “Involving yourself in team events where you need to collaborate and compete as a team toward a common objective is extremely relevant from a STEM standpoint,” he said.

James Housel, Bodyshop Launch Manager at Ford: “Saturday morning cartoons watching ‘Wile E. Coyote, SUUUUUUPER Genius.’” The cartoon character is always obtaining crazy gizmos from fictional mail-order company Acme in the hopes of capturing the Road Runner.

Cynthia Jones, Director, Museum Experiences & Engagement, at The Henry Ford: “I loved to play the board games Risk and Clue. Both of those helped me identify patterns, test hypotheses, set strategy goals and learn from failure.” Like Williams, Jones, a dedicated swimmer through high school, credits competitive sports too.

Doug Plond, Senior Manager, Ford Rouge Factory Tour, at The Henry Ford: “As a really young tyke, I loved to build with my red cardboard brick set—knocking them down was the fun part. Once I got a bit older, I moved up to Lincoln Logs.”


Jennifer LaForce is Editorial Director at Octane and Editor of The Henry Ford Magazine. This post was adapted from an article first published in the June–December 2021 issue of The Henry Ford Magazine.

African American history, toys and games, The Henry Ford Magazine, sports, Michigan, manufacturing, Ford workers, Ford Rouge Factory Complex, Ford Motor Company, Dearborn, childhood, cars, by Jennifer LaForce, alternative fuel vehicles

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at Hagerty tackle questions about trends in mobility and in car collecting—both today and tomorrow.

What aspect of mobility history (artifacts, topics, or themes) preserved at The Henry Ford feels the most significant in the current moment?

The Henry Ford’s amazing collection of self-propelled transportation machinery ranges from the diminutive 1896 Ford Quadricycle runabout that weighs just 500 pounds with an engine making four horsepower, to the Chesapeake & Ohio Railway’s gargantuan 1941 Allegheny steam locomotive weighing in at an unimaginable 1.2 million pounds and making 7,500 horsepower.

Of all these, however, the most powerful is an unassuming lime, white, and gold bus that powered the country out of its dark past of segregation into a future where laws would not discriminate against the nation’s citizens simply on the color of their skin. Especially when viewed through the prism of current events such as the Black Lives Matter movement, the 1948 General Motors (GM) bus where Rosa Parks made her stand against racial discrimination by sitting down is the most significant piece of mobility history in The Henry Ford’s collection.

Angled, aerial view of gold, green, and white bus in museum exhibit
The Rosa Parks Bus, on exhibit in With Liberty and Justice for All in Henry Ford Museum of American Innovation, is Hagerty’s pick for the most significant artifact from The Henry Ford’s collections in the current moment. / THF14922 

What cars are popular with collectors right now that might eventually make their way into museum collections?

Definitely include the Tesla Roadster as the start of an incredible story about Elon Musk. It’s also the first vehicle to make electrics cool. The McLaren P1 hybrid supercar was important for establishing electrification as a must-have feature in the supercar class, making every other supercar seem outdated. Any current Formula One car, as their complex hybrid powerplants are achieving formerly unheard-of efficiency rates of over 50 percent, which is the future of the internal combustion engine … assuming it has a future. The Chevy Bolt will be remembered as the turning point for General Motors’ reputation and the industry as a whole, transforming GM from the company that notoriously “killed the electric car” (the EV1) to one of the technology’s chief proponents. The same holds true for a Volkswagen diesel, circa 2010—an enormously influential moment in which the world’s largest automaker was forced by its own actions to pivot to fully embracing electric tech, thus spurring the industry as a whole to commit to electrification.

Back view of low black car parked in lot by building
One of Hagerty’s suggestions for cars that might make their way into museum collections is a Tesla Roadster—like this one, photographed in 2008 and owned by Elon Musk himself (photographed by Michelle Andonian). /  THF55832

Are there vehicle(s), innovator stories, or mobility technologies you think The Henry Ford should add to its collections right now? Why?

An early fuel-cell vehicle, either a Honda Clarity or Toyota Mirai or Hyundai Tucson FCEV, would represent how the industry has placed bets on various technologies—and how at that moment in time, it wasn’t clear which would win out (one could debate whether it is clear even now). Obviously, a Tesla Model S with autopilot tells the story of Silicon Valley’s attempt to disrupt the auto industry through fast-paced innovation common in big tech, but unknown in the historically cautious and slow-moving auto industry. A retired Waymo or GM Cruise taxi studded with LiDAR sensors would be an example of the first attempts to commercialize autonomous vehicles.

What mobility artifacts, innovator stories, or technologies do you think The Henry Ford will be collecting in 10 years? 50 years? 100 years?

Batteries are the new frontier, as are electric motors—and the relentless drive for efficiency in both. Nothing else defines this era so aptly. Also, semiconductor manufacturing. We have seen how beholden the industry is to a component that wasn’t even used in cars just a few decades ago. The cars of today and tomorrow are just the boxes that computers come in; every automaker is turning itself into a tech company whose primary competitive advantage will be in software.

Metal box with label with text on top and connection ports on back
By 1990, computer engine controls were nearly universal on American automobiles. This GM computer module controlled a gasoline engine's ignition firing sequence. Hagerty notes thatThe cars of today and tomorrow are just the boxes that computers come in.”  / THF109463

Aluminum construction is important, too. The 2015 Ford F-150, the first aluminum-body truck, is a watershed moment for aluminum in high-volume vehicles. It is an open question now whether aluminum will spread beyond that experiment, but no automaker has made such a high-stakes gamble as Ford with the F-150. New materials and manufacturing methods are coming as the battle to reduce weight continues into the electrification era.

What aspects of mobility is Hagerty paying the most attention to right now?

The act of getting behind the wheel, twisting the key, and hitting the road is an act of personal freedom, and we believe anyone and everyone who wants to experience that should be able to. Our longstanding Hagerty Driving Experience has put thousands of young people all over North America behind the wheels of classic cars, alongside passionate owners, to teach the basics of operating a manual transmission. Through the nonprofit Hagerty Drivers Foundation, we launched the “License to the Future” program, which provides financial assistance to kids ages 14–18 to cover the expense of driver’s training. And the Hagerty Driving Academy partners with Skip Barber Racing School at dozens of events around the country to teach safe, proficient driving skills in a variety of situations.

Man in raincoat and hat holds a paper by a car with decal with text on side; young man sticks head and elbow out driver side window
Ensuring young people have access to driver training is important. In this 1940 photo, a young man takes a driver’s test as part of the Ford Motor Company Good Drivers League at the New York World’s Fair. / THF216125 

We also regularly report on developments taking place in the realm of autonomous vehicles as a trusted voice to assure our members that this beloved activity that connects us—driving—is under no threat from the far-off future.

Will the future make owning classic vehicles more difficult or less difficult? Servicing older vehicles is already becoming harder, due to shortages in knowledge and parts, but will new technologies such as 3D printing or electric conversion mean that older vehicles will have new lives and relevance in the future?


Ellice Engdahl is Digital Collections & Content Manager at The Henry Ford. Aaron Robinson is Editor-at-Large, Kirk Seaman is Senior Editor, and Stefan Lombard is Executive Editor at Hagerty. Hagerty is an automotive enthusiast brand and the world's largest membership organization for car lovers everywhere. See Collecting Mobility for yourself in Henry Ford Museum of American Innovation from October 23, 2021, through January 2, 2022.

autonomous technology, education, manufacturing, alternative fuel vehicles, African American history, Rosa Parks bus, technology, cars, by Stefan Lombard, by Kirk Seaman, by Aaron Robinson, by Ellice Engdahl

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at General Motors (GM), donors of the General Motors first-generation self-driving test vehicle in the exhibit and contributors to our Driven to Win: Racing in America exhibit, tackle questions about autonomous vehicles (AVs), electric vehicles (EVs), and racing.

Our latest permanent exhibit, Driven to Win: Racing in America, is presented by General Motors. How has GM’s racing program evolved over time? 

GM’s Chevrolet and Cadillac brands have both had long, storied histories in motorsports. Racing is a fundamental part of what we do—from transferring technology learned on the track to help us build better vehicles to connecting with consumers through something they love.

Man with broom mustache in jacket and soft racing helmet, with goggles pushed up on forehead
Racing driver Louis Chevrolet co-founded GM’s Chevrolet brand with William C. Durant in 1911. / THF277330

Chevrolet has been successful in professional motorsports in the United States and around the globe, capturing many manufacturer, driver, and team championships in NASCAR, IndyCar, IMSA, and the NHRA. From stock cars to advanced prototypes, Cadillac Racing has a rich history—more than half a century—of racing around the world and around the clock on some of the world’s notably challenging circuits.

Off the track, our racing programs have evolved with the help of our GM facilities. In 2016, General Motors opened the doors to the all-new GM Powertrain Performance and Racing Center—a state-of-the-art facility designed to enhance the development processes for the company’s diverse racing engine programs.

In 2021, General Motors broke ground on the new Charlotte Technical Center, a 130,000-square-foot facility that will expand GM’s performance and racing capabilities. The facility is a $45 million investment for GM and it will be a strong hub for the racing and production engineering teams to collaborate, share resources, and learn together, delivering better results more quickly, both on the racetrack and in our production vehicles.

Two open-top race cars on a road or track with wooded hills in the background
The Chevrolet Corvette has a long, proud history in professional and amateur sports car racing. This pair of Corvettes is seen at a Sports Car Club of America race in Maryland in 1959. / THF135778

Engineering has become incredibly advanced over time, and leveraging tools between racing and production has become extremely important. We use tools like computational fluid dynamic models, which uses applied mathematics, physics, and computational software to visualize how a gas or liquid flows. These CFD models help us predict things like powertrain performance and aerodynamics.

Also, our Driver-in-the-Loop simulator allows us to test vehicles on courses virtually. It is the combination of two technologies: a real-time computer (with vehicle hardware) and a driving simulator. The driving simulator allows our development engineers to drive and test the real-time computer simulation and added hardware system on a virtual track, just like they would a physical prototype. The simulator was used extensively during the development of the mid-engine Corvette C8.R race car.

The 2001 C5-R Corvette is currently on loan from General Motors and can be seen by guests inside Driven to Win: Racing in America. Why was this vehicle selected to go on display inside Henry Ford Museum of American Innovation? 

The Corvette C5-R made its debut in 1999 at the Rolex 24 at Daytona and was a fixture of global GT racing for the next five years. From 1999–2004, Corvette Racing and the C5-R set the standard for racing success with 31 victories in the American Le Mans Series, along with an overall victory at the Rolex 24 in 2001.

During six years of competition, Corvette Racing—the first factory-backed Corvette team in the car’s history—led the C5.R to an overall victory at the Daytona 24-hour race and three 1-2 finishes in the GTS class at the 24 Hours of Le Mans. During the 2004 season, Corvette Racing won every race the team entered and captured every pole position in the American Le Mans Series.

Low yellow race car with text and logos
2001 C5-R Corvette, on loan from General Motors Heritage Center and currently on exhibit in Driven to Win: Racing in America in Henry Ford Museum of American Innovation. / THF185966

This specific car raced 17 times from August 2000 through June 2002 with 10 wins. It brought home the first win for the factory Corvette Racing program—Texas 2000 in the ALMS’ GTS class. Then it went on to become 2001 overall winner at Rolex 24, which was quite an accomplishment for a GT car. The car went on to win its class at Le Mans 24 in both 2001 and 2002. The modern era of Corvette’s factory racing program continues today, after over 20 years and 4 generations (C5/C6/C7/C8).

The success of this C5-R essentially started it all and we are proud to have it on display.

General Motors' donation of the 2016 GM First-Generation Self-Driving Test Vehicle was our first self-driving car acquisition. Why was it important to have this car join more than 300 others—including GM landmarks like the 1927 LaSalle and the 1997 EV1 Electric—in the collections of The Henry Ford? 

This vehicle represents a huge step forward on the journey to fully autonomous driving. With Cruise, our majority-owned subsidiary, we’re determined to commercialize safe, autonomous, and electric vehicles on our way to a driverless future—one with zero crashes.

Side view of compact white car with equipment on top and wires dangling down side
General Motors tested a series of autonomous vehicles in San Francisco, California, and Scottsdale, Arizona, in 2016. These cars used a combination of cameras, radar and lidar sensors, cellular and GPS antennas, and powerful computers to drive themselves on public streets in both cities. GM donated this one, now on exhibit in Driving America in Henry Ford Museum of American Innovation, to The Henry Ford in 2018. / THF173551

Cruise was the first AV company permitted to give rides to the public in its current driverless vehicles in the San Francisco area. Expansion of our real-world test fleet will help ensure that our self-driving vehicles meet the same strict standards for safety and quality that we build into all of our vehicles.

GM became the first company to assemble self-driving test vehicles in a mass-production facility when its next generation of self-driving Chevrolet Bolt EV test vehicles began rolling off of the line at Orion Township, Michigan, in January 2017.

The self-driving Chevrolet Bolt EVs feature an array of equipment, including LIDAR, cameras, sensors, and other hardware designed to accelerate development of a safe and reliable fully autonomous vehicle.

Reshaping cities and the lives of those who live in them has tremendous societal implications. Since we believe that all AVs will be EVs, these efforts will clearly advance our vision of zero crashes, zero emissions, and zero congestion, and help us build a more sustainable and accessible world.

This vehicle was really the first of its kind and its display is a sneak peek at the future of autonomy.

By 2025, General Motors plans to offer more than 30 electric vehicles globally. What does an all-electric future look like for Generation E? 

For electric vehicles to make an impact, we need consumers to embrace them in mass numbers. So earlier this year, General Motors introduced the world to EVerybody In.

This is our brand commitment toward advancing a world with zero crashes, zero emissions, and zero congestion. EVerybody In is more than a brand campaign, it's a global call to action for everybody to join us on the road to an all-electric future.

Front view of compact red car
GM introduced the EV1 in 1997. It was among the most sophisticated electric cars built during the 20th century. / THF91060

GM wants to put everyone in an EV. Thanks to Ultium, our EV architecture, GM is able to reimagine the vehicles it produces today as electric vehicles with equivalent power, excellent range, and a manufacturing cost different that is expected to diminish as EV production increases.

Not only will our EVs be fun to drive and cost less to own, they will also provide an outstanding customer experience. This is how we will encourage and inspire mass consumer adoption of EVs. GM has the technology, talent, scale, and manufacturing expertise to do it.

The all-electric future we are creating goes beyond our vehicles, it is inspiring us to do even more to help mitigate the effects of climate change. We plan to source 100 percent renewable energy to power our U.S. sites by 2025, and to become carbon neutral in our global vehicles and operations by 2040.

General Motors wants to impact society in a positive way and these are some of the steps we are taking to make it happen.

General Motors is committed to electrification—what types of current EV projects from the company might we expect to see in the museums of tomorrow?

With more than 30 EVs being introduced by 2025, we have a lot of exciting vehicles coming. From sedans, to trucks, to full-size SUVs, we will have a wide range of offerings in terms of size and design.

We are entering an inflection point in the transportation industry, a transformation the industry has not seen in decades—the mass adoption of electric vehicles. The first of any of these entries will be a sight to see in the museums of tomorrow for generations to come.


Lish Dorset is Marketing Manager, Non-Admission Products, at The Henry Ford. Todd Christensen is Strategy and Operations Manager, Chevrolet Motorsports Marketing & Activation, and Gina Peera is Corporate Strategy and Executive Communications at General Motors. General Motors is a global automotive manufacturer, driving the world forward with the goal to deliver world-class customer experiences at every touchpoint and doing so on a foundation of trust and transparency. See Collecting Mobility for yourself in Henry Ford Museum of American Innovation from October 23, 2021, through January 2, 2022.

engineering, manufacturing, Henry Ford Museum, Driving America, Chevrolet, alternative fuel vehicles, technology, autonomous technology, Driven to Win, race cars, racing, cars, by Gina Peera, by Todd Christensen, by Lish Dorset

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at the Michigan Department of Transportation (MDOT) and the Michigan Economic Development Corporation (MEDC) tackle questions about the infrastructure of mobility.

Our cars are increasingly "connected," whether for navigation, communication, or entertainment. What challenges does this pose for our current infrastructure, and what improvements are most urgently needed to keep pace with technology?

MDOT:

First, the balance between data-sharing and privacy. The Michigan Department of Transportation leads all our efforts with safety first. Our agency looks to find opportunities to solve modern traffic challenges as cars become increasingly connected with technology that meets the need for navigation, communication, and/or entertainment.

Due to today’s connectivity, MDOT has the means to share data and asset information relevant to roadway users—for example, wrong-way driving alerts and information directly connected to infrastructure, vehicles, and other devices. But as more consumers purchase connected vehicles, there are increased opportunities for exploitation by hackers using cellular networks and/or wi-fi. Therefore, software vulnerabilities, privacy, and other cybersecurity concerns must be addressed as quickly as the technology progresses.

Small electronic device, cord, instruction manual, "quick reference guide," and box for GPS system
Early standalone consumer GPS units, like this 1998 Garmin “Personal Navigator” system, had limited or no integration with the rest of a car. As vehicles become increasingly connected, potential safety and security concerns increase too. / THF150113

Second, leaving room for solutions, opportunities, and collaboration. It is imperative to remain technology-agnostic and interoperability is critical. Today’s vehicles meet many needs and should be able to work with many devices and operating systems.

A recent decision by the Federal Communications Commission (FCC) to reallocate a portion of the radio spectrum from public safety to commercial use has been the most significant impact to date. This introduces the potential of not having enough spectrum to operate the technology to improve safety and mobility. Continued collaboration with other governmental agencies, private companies, and academia leads to a safer, better user experience for motorists.

Yellow record cover with text and image of front of large truck
Challenges in allocating limited radio spectrum frequencies aren’t new. In 1977, at the height of the CB radio craze, the FCC yielded to popular demand by expanding the number of citizens band channels from 23 to 40. / THF106547

MEDC:

The increase in connectivity between vehicles challenges our current infrastructure because infrastructure upgrades are not able to happen as quickly as the vehicle technology is advancing. First, we need to make sure our current infrastructure is maintained and suitable for the vehicles we do have on the roads. The next improvements would be continuing to implement vehicle-to-everything (V2X) technology on our roadways, and to explore connected infrastructure projects, such as a public-private partnership to establish and manage a connected roadway corridor.

Navigation apps like Waze leverage user data and intelligent transportation systems (ITS) to provide real-time updates, helping drivers avoid construction and other traffic congestion. Does MDOT have its own advanced technologies and services to enhance these platforms and keep Michigan drivers safe and on the move?

MDOT:

MDOT utilizes a variety of methods to reach out to our citizens to provide traveler information. Drivers can access our Mi-Drive link for detailed information regarding construction projects, etc. Our traffic operations centers post information for incidents and rerouting on our dynamic message signs located on our freeway system.

Square-shaped narrow white plastic box with text "wazebeacon"
This 2018 Waze beacon, on display in Collecting Mobility through January 22, 2022, eliminated dead spots in GPS navigation by placing battery-powered beacons in tunnels where GPS satellite signals couldn't reach. / THF188371

As vehicles and roadways transition to the future state of connectivity, there will continue to be many vehicles on the road that are not equipped with these technologies. How will the new systems accommodate older or non-connected vehicles?

MDOT:

MDOT works with industry partners on that transition, and as new technologies are implemented, we are always considering the users and amount of saturation for vehicles to take advantage of them. For example, MDOT provides information on our dynamic message boards, and we can also provide that information into connected vehicles. It would be difficult to remove those dynamic message signs currently, as the number of connected vehicles on the road today is not high enough. The technologies will become more prevalent as drivers get new vehicles and aftermarket technologies are implemented on older vehicles. Systems already exist on vehicles coming off the assembly line that are improving safety, such as blind spot and forward collision warnings, and adaptive cruise control.

Car in distance on dirt road between fields; a horse-drawn carriage is pulled over on one side
The coming transitional period, in which connected cars share roads with non-connected vehicles, will mirror the mobility transition of the early 20th century, when horse-drawn vehicles coexisted with automobiles. / THF200129

MEDC:

It’s important to note that connected roadways will not cancel out the use of non-connected vehicles—there will be a transitional period where a lot of non-connected vehicles will use aftermarket Internet of Things (IoT) solutions that allow them to take advantage of the connected roadways. The non-connected vehicles may not be able to take advantage of all the benefits of the connected roadways, like communication and navigation, but there will be solutions to upgrade their vehicles to accommodate them.

We've long depended on gasoline taxes to finance road construction and maintenance. But as the percentage of electric vehicles (EVs) grows, gas tax revenues decrease. Should we be looking at new funding methods? What alternatives should we consider?

MDOT:

This will be an important public policy discussion going forward. In Michigan, road funding legislation signed by then-Governor Rick Snyder in 2015 included increased registration fees for EVs. Roads in Michigan are primarily funded through registration fees and fuel taxes. More creative mechanisms will be necessary to continue to maintain our roads and bridges. Legislation in Michigan tasked MDOT with conducting a statewide tolling study, which is ongoing. New public-private partnerships will be vital to creating and maintaining charging infrastructure. 

Small white wooden building with sign on side, shaded by a tree
Gas taxes won’t pay for roads in an electric-vehicle world. This modern problem could be solved in part with an ancient solution: toll roads. Learn more about highway funding challenges in our “Funding the Interstate Highway System” expert set. / THF2033

States could look to local governments and other state agencies to encourage charging infrastructure inclusion in building codes and utility company build-out plans. There is also uncertainty at the moment around what federal programs might be created as a result of the draft infrastructure plan being debated by Congress.

MEDC:

Yes, absolutely. With more electric vehicles coming to market, there is an opportunity for more creative ways to finance roads while ensuring no more of a burden on electric vehicle drivers than on gasoline vehicle drivers. Some alternatives include a VMT (vehicle miles traveled)–based fee that electric vehicle owners could opt into. The fee would be based on a combination of the vehicle’s metrics and miles driven, to accurately reflect road usage and the gas taxes that gasoline vehicle owners pay. This is also a policy recommendation in the Michigan Council on Future Mobility and Electrification’s annual report, which will be published in October 2021.

In the 1950s, there were experiments with guidewire technology that enabled a car to steer itself by following a wire embedded in the pavement. Today we're experimenting with roads that can charge electric vehicles as they travel. Is it time to rethink the road itself—to connect it directly with our cars?

MDOT:

Thankfully, infrastructure continues to become “smarter” due to intelligent transportation systems, smart signals, and more—for example, the simplification of the driving environment for connected autonomous vehicles (CAVs). In 2020, MDOT established a policy to increase the width of lane lines on freeways from four to six inches to support increasing use of lane departure warning and lane keeping technologies.

Page with text and blue bars at top and bottom; black-and-white drawing showing the back of a person driving a car on a freeway (as if the viewer was in the backseat)
Our roadways evolve with our technologies. This 1956 brochure promotes the proposed Interstate Highway System—which was then a brand-new idea, not yet implemented. / THF103981

Similarly, the roadway can be evolved to optimize travel in EVs. The development of a wireless dynamic charging roadway in Michigan is a step forward in addressing range anxiety and will accelerate better understanding of infrastructure needs moving forward. This inductive vehicle charging pilot will deploy an electrified roadway system that allows electric buses, shuttles, and vehicles to charge while driving. The pilot will help to accelerate the deployment of electric vehicle infrastructure in Michigan and will create new opportunities for businesses and high-tech jobs.

Infographic with text, line drawings, and photograph in background
Some of Michigan’s “smart infrastructure.” / Infographic courtesy MDOT

MEDC:

It is time to rethink the road itself—as new advancements in mobility and electrification roll out for vehicles, it’s only natural to rethink the infrastructure these vehicles operate on. As computers got smaller and more compact over time, so did their chargers. It’s a similar thing with vehicles and their infrastructure. As vehicles get smarter and more connected, the infrastructure will have to follow suit.


Matt Anderson is Curator of Transportation at The Henry Ford, Michele Mueller is Sr. Project Manager - Connected and Automated Vehicles at Michigan Department of Transportation, and Kate Partington is Program Specialist - Office of Future Mobility and Electrification at Michigan Economic Development Corporation (MEDC). The Michigan Department of Transportation is responsible for Michigan's 9,669-mile state highway system, and also administers other state and federal transportation programs for aviation, intercity passenger services, rail freight, local public transit services, the Transportation Economic Development Fund, and others. The Michigan Office of Future Mobility and Electrification within the MEDC was created in February 2020 to bring focus and unity in purpose to state government’s efforts to foster electrification, with a vision to create a stronger state economy through safer, more equitable, and environmentally conscious transportation for all Michigan residents. See Collecting Mobility for yourself in Henry Ford Museum of American Innovation from October 23, 2021, through January 2, 2022.

autonomous technology, alternative fuel vehicles, Michigan, technology, roads and road trips, cars, by Kate Partington, by Michele Mueller, by Matt Anderson

Boxy blue vehicle in doorway; one person on hands and knees looking underneath; 2 other people standing nearby
The Mcity Driverless Shuttle arrives at The Henry Ford.

Thanks to a generous gift from the University of Michigan (U-M), The Henry Ford recently acquired its second autonomous vehicle: a driverless shuttle used by U-M’s Mcity connected and automated vehicle research center. Readers may recall that we acquired our first AV in 2018 – a 2016 General Motors Self-Driving Test Vehicle. While the GM car was an experimental vehicle focused on technology, the Mcity shuttle took part in an intriguing project more focused on the psychology of consumer trust and acceptance of driverless vehicles.

From June 4, 2018, through December 13, 2019, Mcity, a public-private research partnership led by U-M, operated this driverless shuttle at U-M’s North Campus Research Complex in Ann Arbor. The project’s purpose was to understand how passengers, pedestrians, bicyclists, and drivers interacted with autonomous vehicles. In effect, the project was a way to gauge consumer acceptance of a decidedly unconventional new technology.

The shuttle donated to The Henry Ford is one of two fully-automated, electrically-powered, 11-seat shuttles Mcity operated on a fixed route around the research complex throughout the course of the study. The shuttles were built by French manufacturer Navya. In late 2016, Navya had delivered its first self-driving shuttle in North America to Mcity, where it was used to support research and to demonstrate automated vehicle technology. In June 2017, Mcity announced plans to launch a research project in the form of an on-campus shuttle service that would be open to the U-M community.

The Mcity Driverless Shuttle operated on a one-mile loop around the North Campus Research Complex at speeds averaging about 10 miles per hour. The service ran Monday-Friday from 9 AM to 3 PM. While its route avoided heavy-traffic arteries, the shuttle nevertheless shared two-way public roadways with cars, bicycles, and pedestrians. It operated in a variety of weather conditions, including winter cold and snow; but was not used in more extreme weather, such as heavy snow or rain.

Side view of boxy blue shuttle with large windows and several people visible inside; grass in foreground and building in background
The Mcity Driverless Shuttle on its route at the University of Michigan’s North Campus Research Complex. (Photo credit: University of Michigan)

While the shuttle and its technology are impressive enough, the impetus behind its use is arguably more important to The Henry Ford. The Mcity research project was the first driverless shuttle deployment in the United States that focused primarily on user behavior. Mcity’s goal was to learn more about how people reacted to AVs, rather than prove the technology. The two shuttles were equipped with exterior video recorders to capture reactions from people outside the shuttle, and interior video and audio recorders to capture reactions from passengers inside. On-board safety conductors, there to stop the shuttle in case of emergency, also observed rider behavior.

Mcity staff monitored ridership numbers and patterns throughout the project, and riders were encouraged to complete a survey about their experience that was developed by Mcity and the market research firm J.D. Power. Survey questions ranged from basic inquiries about age and relationship to the university, to more specific inquiries about reasons for riding, degree of satisfaction with the service, interest level in AV technology, and – most significantly – degree of trust in the shuttle and its driverless capabilities. The survey data was then analyzed by J.D. Power. You can learn more about the results through Mcity's white paper, "Mcity Driverless Shuttle: What We Learned About Consumer Acceptance of Automated Vehicles."

Along with the shuttle itself, U-M has kindly donated examples of the special signage installed by Mcity in support of the shuttle project. There are no current government regulations – at the federal, state, or local levels – for signage along a driverless vehicle route. Mcity developed its own signs to alert other road users to the shuttle’s presence. Samples include signs proclaiming “Shuttle Stop” and “Attention: Driverless Vehicle Route.”

Autonomous vehicles are coming to our streets – it’s no longer a question of “if,” but of “when.” Indeed, the Mcity shuttle project proves that AVs are, to an extent, already here. These driverless vehicles promise to be the most transformative development in ground transportation since the automobile itself. Self-driving capabilities will fundamentally change our relationship with the vehicle. The technology promises improved safety and economy in our cars and buses, greater capacity and efficiency on our roads, and enhanced mobility and quality of life for those unable to drive themselves. The Mcity Driverless Shuttle represents an important milestone on the road to autonomy, and it marks an important addition to The Henry Ford’s automotive collection.

Continue Reading

autonomous technology, technology, research, Michigan, by Matt Anderson, alternative fuel vehicles

thf91040
THF91040

In the early 21st century, the threat of global warming and the end of cheap gas worried many drivers. Among drivers’ options was buying a gasoline-electric hybrid such as this Prius. The hybrid concept was over 100 years old, but new technologies made it practical. Hybrids cost more but reduce fuel consumption, which leads to lower emissions.

thf206198

Toyota introduced the Prius in Japan in 1997 and then worldwide in 2000. The price was steep for a compact, but tax credits offset some of the cost, and drivers got a little environmental peace of mind in the deal, too. THF206198

thf101127

One of the selling points of modern hybrid cars is that computers do all the work. But many owners like monitoring the car’s operation on the in-dash screen and enjoy minimizing fuel usage. This image shows the dashboard of a 2004 Prius. THF101127

thf205087

Toyota pointed to the Prius as proof of its commitment to the environment. This 2001 advertisement highlighted the company’s efforts to refine its hybrid system in a continued “search for even greener forms of transportation.” THF205087

environmentalism, hybrid cars, alternative fuel vehicles, Henry Ford Museum, Driving America, cars

Built 86 years apart, two vehicles in The Henry Ford’s collection say a great deal about changing technology -- but they say even more about our society's changing values.

thf91037

THF91037

1916 Woods Dual-Power Hybrid Coupe

The Woods Motor Vehicle Company, established in 1899 as one of America's earliest automobile producers, was one of the biggest makers of battery-powered electric cars. But, by the early 1910s, the popularity of electric cars was waning. Gasoline-powered cars went farther on a tank of gas than electric cars went on a single battery charge, and filling an empty tank was easier and quicker than recharging batteries. These key shortcomings became more important as car owners drove their cars longer and longer distances. The Woods company sought to meet the challenge by building a car with two power-plants -- a clean, quiet, electric motor fed by batteries and an internal combustion engine fed by gasoline. The Woods Dual-Power automobile appeared in 1916.

thf103732
Driving a Dual-Power was different from driving an electric or gasoline car. The driver manipulated levers to vary the balance between the gasoline and electric motors. THF103732

Driving a Dual-Power was considerably different from driving either an electric or a gasoline car. The driver began by moving a lever on the steering wheel to get the car rolling under electric power. When the car reached the speed of 20 miles per hour, the driver moved another lever to engage a clutch connecting the electric motor to the gasoline motor, starting the gasoline motor. By manipulating the levers, the driver varied the balance between the gasoline and electric motors; the car could run on both power sources at the same time, or either independently.

But the Dual-Power seemed to solve problems customers didn't have in 1916. The 48 miles-per-gallon figure claimed for the car meant little to a driver who could afford the Woods' $2,650 price. And the Woods' 35 miles-per-hour top speed was no better than a $740 Model T Ford sedan's. Woods didn't even advertise the Dual-Power's lower exhaust emissions, because automobile pollutants were of little concern at that time. It also seems that the Dual-Power was not as smooth and trouble free as the ads and brochures suggested. Woods re-engineered the car for 1917, but potential buyers were not impressed. The Dual-Power -- and the Woods Motor Vehicle Company itself -- vanished in 1918.

thf91040
THF91040

2002 Toyota Prius Sedan

Ratchet forward to the 1990s. Automakers around the world were confronted by rising gasoline prices and stringent regulations on tailpipe emissions. Japanese giant Toyota set out to design a new car that dramatically improved gas mileage and dramatically reduced exhaust emissions. Toyota engineers probably never heard of the Woods Dual-Power, but in 1994 they settled on a dual-power design, combining a small gasoline engine with batteries and an electric motor. The first hybrid Toyota Prius went on sale in Japan in December 1997, and in the United States in August 2000.

thf91042
Operating a Prius was simple -- a sophisticated computer system controlled both the electric and gasoline motors, smoothly shifting power between the two. THF91042

Although the Prius drivetrain was similar in principle to the Dual-Power's, operating a Prius was much simpler. The driver merely turned the ignition key, pulled the transmission selector lever into "D," stepped on the gas, and drove away. A sophisticated computer system controlled both the electric and gasoline motors, smoothly shifting power between the two. Sometimes the computer system used the gasoline engine to recharge the batteries. It even shut the engine off when the car stopped and started it up again as needed. The Woods engineers would have given their eye teeth for such technology. Woods sales staff might have given their right arms for the Prius' popularity.

Toyota's Prius hybrid sold well in Japan and even better in the United States. By 2005, Prius accounted for nearly 10% of Toyota's American sales. Part of that popularity was due to Prius' reliability, good performance, and considerable amount of interior room for its size. Part was due to Prius' excellent gas mileage -- over 40 miles-per-gallon on the highway and over 50 mpg in stop-and-go traffic. But it could take several years for savings on gasoline to make up for the several thousand-dollar price difference between a Prius and a comparable, conventional Toyota Corolla -- even with federal tax subsidies for hybrid cars.

thf205087
For many people, what a car doesn't do -- use lots of gasoline, emit lots of pollutants -- has become as important as what it does do. THF205087

What really sold many people on the Prius was environmental responsibility. Driving cars with lower emissions and higher gas mileage was The Right Thing To Do, whether it reduced out-of-pocket expenses or not. Furthermore, driving a Prius told the world that you were Doing The Right Thing. The Prius became hip, especially among intellectuals and celebrities. Movie stars took to arriving at the Academy Awards in Priuses rather than limousines to demonstrate their concern for the environment. Even after other car makers such as Ford, Honda, Saturn and Nissan added hybrids to their lineups, the Prius retained its cachet.

The stories of the Dual-Power and Prius tell us that the definition of what we want an automobile to do is always evolving. Yes, we want cars to take us where we want to go. And taking us there in high style, or high comfort, or at high speed is often still important. But, for many people, what a car doesn't do -- use lots of gasoline, emit lots of pollutants -- has become as important as what it does do.

Bob Casey is The Henry Ford’s former Curator of Transportation. A version of this post originally ran in March 2007 as part of our Pic of the Month series.

hybrid cars, Driving America, Henry Ford Museum, environmentalism, electricity, power, by Bob Casey, cars, alternative fuel vehicles

thf91037
THF91037

In 1916, gasoline was cheap, and no one cared about tailpipe emissions. But this hybrid wasn’t about fuel prices or pollution. Woods Motor Vehicle Company built it to capture new customers. Sales of the company’s electric cars were falling as more people chose gasoline-burning cars. The Dual-Power supposedly combined the best of both, but customers disagreed. The car and the company disappeared in 1918.

thf103736

This 1913 Woods Electric was much like other companies’ electric cars. Sales of all electrics—not just Woods—declined in the teens. THF103736

thf103732

The 1916 Dual-Power’s gasoline engine and electric motor are under the hood, connected by a magnetic clutch. Its battery box is under the seat, toward the rear.” THF103732

thf103741

Woods used surprisingly antiquated imagery in the logo for the Dual-Power. Perhaps the company was trying to assure potential buyers that its radical new car was as reliable as the familiar horse. THF103741

Henry Ford Museum, Driving America, cars, power, alternative fuel vehicles, hybrid cars

thf91139
1907 White Model G Steam Touring Car. THF91139

Millionaire industrialist John D. Rockefeller bought a White steamer. So did “Wild West” showman Buffalo Bill Cody. President William H. Taft included one in the first presidential car fleet. These men, born before the Civil War, might have felt more comfortable with steam than with newer technologies such as internal combustion. But buyers were moving to gasoline-powered cars. White followed, making its last steamer in 1911.

thf103745
THF103745

This 1908 advertisement never mentions that the White was powered by steam.

thf103748
THF103748

Starting a steam car was complex—just try to follow these instructions. It took at least 10 minutes to get up a “head of steam.” Many owners had chauffeurs to handle the task.

thf106556
THF106558

Famous Western showman Buffalo Bill parades beside a White. Buyers of the expensive steamers tended to be older and wealthier than the average American.

Henry Ford Museum, Driving America, alternative fuel vehicles, cars