Past Forward

Activating The Henry Ford Archive of Innovation

thf137271Portraits of Robert Propst. THF137271

PROFESSION: Designer (Although he preferred to be called "searcher")

INNOVATION: The Action Office II System (1968) and the movable "coherent structures” of the Co/Struc System designed for hospitals (1971)

ATTRIBUTES: Empathetic observer, serial problem solver, unorthodox thinker

You could be forgiven if you aren’t familiar with the work of Robert Propst. After all, if his designs were working as he intended, they simply disappeared.

Propst became director of the Herman Miller Research Division (HMRD) in 1960, setting up shop in a small concrete building in Ann Arbor, Mich. The founder of Herman Miller, D.J. DePree, saw potential in Propst’s ambitious thinking and hired him to broaden the company’s product range. Very few guidelines were in place at HMRD: Nothing should be connected to military use, no furniture designs — and whatever was designed should simply “be useful.”

thf137214Robert Propst Outside Herman Miller Research Division Office, Ann Arbor, Michigan, July 1964. THF137214

Deliberately choosing a building more than 150 miles away from Herman Miller’s headquarters in Zeeland, Mich., Propst exercised his freedom to research without the distraction of corporate meetings. For every idea he had that went into production, hundreds more were filed away.

Two of Propst’s most impactful projects were holistic environments designed for high-impact workplaces: the improved Action Office II system (1968) and the movable “coherent structures” of the Co/Struc system designed for hospitals (1971).

In Propst’s mind, offices had become chaotic wastelands. Cobbled together furniture, nonergonomic chairs and an invasion of technology onto ad hoc surfaces. Action Office — a modular system of free standing panel walls — could be fluidly arranged into nooks for working, conference areas and other purpose-driven needs. An idealistic vision for the birth of the modern office cubicle.

Propst wasn’t always a designer of “things” but of situations. He attacked issues from the reverse, finding clues in the algorithms of human behavior working in high-stakes spaces. How did people move while working? Where was time being spent? Wasted? How can we support safety? Privacy? Collaboration? The physical solutions he engineered encouraged ideas of access, mobility and efficiency. His modular approach to office landscapes was intended to have a 1+1=3 effect. Which is to say that by implementing physical change, “knowledge” workers could then springboard off an improved relationship with their workspaces, which were suddenly more hospitable to launching new ideas, productive workflows and transformative projects.

thf241708Action Office Project Drawing by Robert Propst, April 6, 1964. THF241708

Did You Know
- The proliferation of the office cubicle is almost single-handedly due to the introduction of the Action Office II system in 1968. Unfortunately, the mobile aspect of Action Office became rooted to the floor, quite literally. Large businesses filled their buildings with Action Office (or its various knock-offs) to create Dilbertesque “cubicle farms.”

- The first version of Action Office was conceived by Robert Propst and designed by George Nelson in 1964, but sales were lackluster. Corporate managers worried about the porous borders being offered to their staff, now called “knowledge workers,” and the cost was simply too high. Propst returned to the drawing board alone for AO2.

- Robert Propst did not like to be referred to as a designer. He also didn’t like the term “researcher,” because it implied looking backward. His ideal description for his activities was “searcher.”

Kristen Gallerneaux is Curator of Curator of Communication & Information Technology at The Henry Ford.  

furnishings, design, Robert Propst, Innovation Nation

thf169326

In the 1980s, desktop computers emphasized non-committal, neutral shades: beige, off-white, black, and the just-barely-greys of putty and fog. During a time when popular culture included the flashiness of MTV, new wave music pressed onto colorful records, and hip hop culture--why so much beige?

Truthfully, home computers were becoming more common, but the largest market remained in office environments. Neutral computers provided visual unity among cubicles, and masked aging plastic.

thf156040
IBM Personal Computer, Model 5150, 1984THF156040

The Apple Newton eMate was one of the first personal computers to break away from the typical form of the "opaque beige box."

thf172045
Apple eMate 300, 1997THF172045

The eMate's distinctive translucency was soon echoed by Jonathan Ive in his radical case design for the iMac G3 computer. From 1998-2001, the iMac was available in an array of 13 colors--from Bondi Blue to Flower Power. 

MacMashup



View all 13 colors of the Apple iMac in The Henry Ford’s digital collections.

This post features objects and text displayed in the 2018 pop-up exhibition Looking Through Things: Transparent Tech, Fashion, and Systems at Henry Ford Museum of American Innovation.

Kristen Gallerneaux is Curator of Communication & Information Technology at The Henry Ford.

Innovation Nation

It’s not every day that you get to see a newly acquired artifact in action – in Greenfield Village just weeks before the opening of the 2019 season.

sno_bob_2

Meet the 1971 Wooster, Ltd. Sno-Bob, recently acquired by The Henry Ford. A Sno-Bob, also referred to as a ski bike, ski bob, or ski toy, is a bicycle frame attached to skis instead of wheels, or sometimes to a set of foot skis. The origins of bicycle-ski contraptions like the Sno-Bob date back to the mid-1800s. Equipped with real skis and a steering system to give the rider more control than a standard sled, the Sno-Bob is a unique offering in the world of winter toys.

sno-bob_1

The Sno-Bob isn’t just a fun winter-themed toy, it’s a bit of a rare find for our collections. As a society, we don’t buy as many snow toys to begin with, let alone save them to be possibly donated to a museum in the future. The Sno-Bob also has a connection to the Beatles, too: those loveable Liverpudlian mop tops ride Sno-Bobs in the Austrian Alps during the “Ticket to Ride” sequence in Help!, their second movie.

While not quite the Austrian Alps, you can see our Sno-Bob in action in Greenfield Village earlier this winter as Conservator Cuong Nguyen takes it out for a spin. While we generally don’t “play” with the artifacts in our collection, we feel that this toy is unique enough to justify video documentation showing how it’s used. (We’re fortunate that the weather cooperated with our plans this winter.)



Charisma Tatum is a PR Coordinator at The Henry Ford; Matt Anderson is Curator of Transportation; Jeanine Head Miller is Curator of Domestic Life.


Pioneering modern designer Ruth Adler Schnee’s bold textiles have broad appeal. Her furnishing and drapery fabrics were favorites of the everyday consumer and leading architects alike, including Minoru Yamasaki, Paul Rudolph, and Buckminster Fuller. Adler Schnee’s textiles, which feature vivid color and abstracted organic forms, added whimsy and depth to the sleek, minimal aesthetic popular in the mid-century period.

Learn more about Ruth's work in this video, and see examples of her designs in this expert set.

design, furnishings, women's history

skare1
"Happy Macintosh" icon from the book, Icons: Selected Work from 1983-2011, available at the Benson Ford Research Center.

It’s 1984. Turn on your Macintosh computer. Marvel at the convenience of the mouse under your hand. Point the arrow on your screen towards a desktop folder and click to open a file. Drag it and drop it somewhere else. Or, open some software. How about MacPaint? Select the pencil, draw some craggy lines; use the spilling paint bucket to fill in a shape. Move your arrow to the floppy disk to save your work. And then… imagine a worst-case scenario, as the ticking wristwatch times out. A pixelated cartoon bomb with a lit fuse appears. Your system crashes. The “sad Mac” appears.

skare2
The Macintosh Personal Computer introduced Susan Kare’s icons to the world in 1984.

Introducing the Icon
Computer icons are visual prompts that when clicked on, launch programs and files, trigger actions, or indicate a process in motion. Clicking an icon is a simple gesture that we take for granted. In our current screen-based culture—spread between computers and smartphones—we might absent-mindedly use these navigational shortcuts hundreds (if not thousands) of times a day.

Before the mid-1980s, after booting up their computers, people typically found themselves greeted by a command line prompt floating in a black void, waiting for direction. That blinking cursor could seem intimidating for new home computer users because it assumed you knew the answers—that you had memorized the machine’s coded language. The GUI (graphical user interface, pronounced “gooey”) changed how humans interacted with computers by creating a virtual space filled with clickable graphical icons. This user-centric form of interaction, known as “the desktop metaphor,” continues to dominate how we use computers today.

The 1984 Apple Macintosh was not the first computer to use a GUI environment or icons. That achievement belongs to the 1973 Xerox Alto—a tremendously expensive, vertically-screened system that only sold a few hundred units. After a few failed attempts, the multi-tasking GUI system finally found a foothold in the home computing market with the introduction of “the computer for the rest of us”—the Macintosh.

From Graph Paper to Screen Pixels
After completing her PhD in Art History, Susan Kare briefly entered the curatorial sphere before realizing that she would rather dedicate her career to the production of her own creative work. In 1982, Andy Hertzfeld, a friend of Kare’s from high school, called with an interesting opportunity: join Apple Computer’s software group and help design the user experience for the then-developing Macintosh computer. 

skare3
“Floppy Disk” save icon from the book, Icons: Selected Work from 1983-2011, available at the Benson Ford Research Center.

Kare took up Hertzfeld’s offer and set to work designing the original Macintosh icons, among them the trash can, the file folder, the save disk, the printer, the cloverleaf command (even today, this symbol appears on Apple keyboards), and the mysterious “Clarus the Dogcow.”

Since no illustration software existed yet, Kare designed the first Macintosh icons and digital fonts through completely analog means. Using a graph paper notebook, she filled in the squares with pencil and felt-tipped pens, coloring inside the lines of the graph as an approximation of the Macintosh’s screen. Despite the limitation of available pixels, Kare found economical ways to provide the maximum amount of visual or metaphoric meaning within a tiny grid of space—all without using shading or color.

Next Wave
Kare’s icons and digital fonts exist beyond the lifespan of the Macintosh, appearing in later Apple products and even early iPods. Iterations and mutations of her icon designs continue to define the visual shorthand of our desktops and software today, migrating across systems and platforms: NeXT Computers, IBM and Windows PCs. Have you ever played Solitaire on a Windows 3.0 computer? If so, you’ve played with Kare’s digital deck of cards.

skare4
A physical version of Susan Kare’s Windows 3.0 Solitaire game.

Have you ever sent a “virtual gift” over Facebook like a disco ball, penguin, or kiss mark? Again, this is the work of Kare, whose work has been quietly shaping our interactions with technology since 1984—making computers seem more friendly, more human, more convenient—one click at a time. 

skare5
Disco ball “party” icon from the book,
Icons: Selected Work from 1983-2011, available at the Benson Ford Research Center.

skare6Kare-designed bandana and tea towels woven on a Jacquard loom.

Kristen Gallerneaux is Curator of Communications & Information Technology at The Henry Ford.

communication, design, by Kristen Gallerneaux, technology, computers, women's history

thf274629
Portrait of Aloha Wanderwell Baker, 1922-1928, THF274629

Secretary. Driver. Mechanic. Lecturer. Explorer. Cinematographer. Filmmaker. All of these job titles, and many more, were held by one extraordinary woman in the 1920s. Her global adventures, visiting more than 40 countries on four continents, earned her the moniker, “The World’s Most Widely Traveled Girl.” And throughout it all, Aloha Wanderwell Baker challenged societal norms, built a career for herself, and created an inspiring legacy of curiosity and resourcefulness.

The young woman who would become Aloha Wanderwell Baker was born Idris Galcia Hall in Winnipeg, Alberta, Canada, in 1906. After her father was killed in action at the Third Battle of Ypres during World War I, Idris’ mother decided to move with both of her daughters to Europe. Young Idris, enrolled in a French convent school, longed for adventure and world travel. According to her memoir, Call to Adventure!, she was a girl who, “desired to sleep with the winds of heaven blowing around her head, and who preferred the canopy of stars and the Mediterranean moon to the handsome but dust-catching and air-repelling draperies of the school furnishings.” With these yearnings, Idris’ time at the school would not be long.

thf274644
Captain Walter Wanderwell Business Card, THF274644

In 1922, young Idris’ future would be forever changed when a traveler known as Captain Walter Wanderwell arrived in Nice, France. Cap, as he was more commonly known, was Polish-born Valerian Johnannes Pieczynski. In 1919, Cap and his wife Nell founded the Work Around the World Educational Club, or WAWEC, to promote world peace, provide educational opportunities, and monitor global disarmament. To accomplish these goals, Nell and Cap competed in a global driving race, the winner being the team to rack up the most miles. Along the way, the teams would sell promotional pamphlets, host lectures, and screen their adventure films as a means to raise money and educate the public. Corporate funds were also sought, such as Cap contacting Henry Ford in 1922 about purchasing the negatives for educational films that were shot. By the time Cap wrote that letter to Ford, he and Nell were physically separated, in Europe and North America, and essentially separated in their marriage.

thf274639
thf274640
Correspondence between Ford Motor Company and Walter Wanderwell, 1921-1922, THF274639

And so it was in Nice, in October 1922, that Cap and Idris’ paths would cross, and her future would forever be changed. In her memoir, she talks about seeing an advertisement for Cap’s lecture in the local newspaper, sneaking out of school to attend. Utterly inspired and captivated by the images she saw, young Idris spoke with Cap afterward. During the conversation, he mentioned his need for a new expedition secretary. The Nice newspaper also carried an ad for this position with the headline, “Brains, Beauty and Breeches-World Tour Offer for Lucky Young Woman.” Going against contemporary norms, the woman who accepted this position would forego skirts for breeches, promise not to marry for at least three years, and be prepared to rough it through Africa and Asia. At the age of 16, Idris, with her mother’s permission, joined the Wanderwell Expedition and became known as Aloha Wanderwell.

thf274627
Postcard, Wanderwell Expedition 1921-192?, THF274627

Between October 1922 and December 1923, the Wanderwell Expedition crisscrossed Europe in their Model Ts. Spain, Italy, France, Germany, Poland - all were visited, some multiple times. Along the route, Aloha learned the skills that would carry her career into the future. After leaving the tour for a few months due to an argument with Cap, Paris became a bore and Aloha longed to be back on the road. She tracked the expedition down in Egypt, and met up with the crew in March 1924.

webmedia
Aloha Wanderwell Arrives at the Sphinx, 1924

After Cairo, the expedition wound its way through the Middle East, then sailed on to Pakistan and India. They covered more than 2,200 miles before sailing to Malaysia. The travelers then made their way up to Cambodia, where they marveled at Ankor Wat, and then went on to Singapore, Hong Kong, and Shanghai. They went up through Tientsin, Peiping, and Murkden before being granted visas to travel to Siberia. Japan was visited after Russia, and then the Wanderwell Expedition sailed for North America.

thf96385
Driver Aloha Wanderwell on the Hoist Lifting Her Ford Model T from Aboard Ship, Shanghai, China, 1924,THF96385

They made landfall in Hawaii, where Cap filmed Aloha next to the Halemaumau volcano. When the expedition arrived in California, Cap left for a few weeks, traveled to Florida, and legally divorced Nell.  Upon his return to California, Cap proposed to Aloha, and they wed in April 1925. Over the next few months, they drove throughout the American West and Midwest, ending up in Detroit that August and ultimately ending in Florida. Their first child, a son named Valri, was born there that December.

thf274631
Captain Walter Wanderwell Filming Aloha Wanderwell on the Edge of Kilauea Volcano, 1924, THF274631

In 1926, the Wanderwells were traveling through Cuba, Canada, and the northeastern United States before they sailed for South Africa, where Aloha reunited with her mother and sister. There, in April 1927, Aloha gave birth to the couple’s second child, a son named Nile. Three weeks later, with Aloha’s mother caring for the children, the expedition left again to traverse the eastern coast of Africa. North they drove, through Zimbabwe, Mozambique, Tanzania, Uganda, and Kenya, where on October 13, 1927, Aloha celebrated her 21st birthday in Nairobi. This journey ended in France, where the Wanderwells reunited with their children and the family returned to the United States. The film documenting these journeys, With Car and Camera Around the World, debuted in 1929.

thf274633
Aloha Wanderwell Driving Car between Limpopo River and Sabe River, Mozambique, 1927, THF274633

The following year in 1930, Cap and Aloha were traveling to Brazil, visiting the Mato Grosso region in an effort to search for lost British explorer Lt. Colonel Percy Fawcett. Flying to the interior of the Amazon rainforest, the Wanderwells’ plane had to make an emergency landing, ending up in the territory of the Bororo tribe. Over the next month, Cap and Aloha befriended them, and when Cap left to obtain replacement parts, Aloha stayed with the Bororos and filmed her experiences. The resulting film, Flight to the Stone Age Bororos, remains part of the Smithsonian’s anthropological film library to this day. Another film focusing on this trip, The River of Death, can be viewed through the Library of Congress.

The next Wanderwell expedition was to be an ocean voyage throughout the Pacific. A yacht, The Carma, was being fitted out for this journey, although it was not to be. In December 1932, Captain Wanderwell was shot and killed on board, a case that remains unsolved. The year after Cap’s death, Aloha married former WAWEC cameraman Walter Baker. The couple continued to travel and film their adventures. Over the years, the travel grew less, but Aloha continued to give lectures and presentations about her adventures. Aloha Wanderwell Baker passed away in Newport Beach, California, in 1996, about a year after Walter.

Aloha’s films, photographs, and writings have allowed later generations to learn of this extraordinary woman who followed her passion. In an age where women were expected to wear dresses and work within the home, she wore breeches and traveled the world. Aloha cultivated skills in jobs that were traditionally reserved for men, and used that knowledge to further her career. She turned a desire to be out in the world into a lifetime of learning and exploring. And in the end, her desire to “sleep with the winds of heaven blowing round her head” drove her to follow her heart, keep an open mind, and learn from the world.

Janice Unger is a Processing Archivist, Archives & Library Services - Benson Ford Research Center, at The Henry Ford.

Source:
Wanderwell, Aloha. Aloha Wanderwell Call to Adventure!: True Tales of the Wanderwell Expedition, First Woman to Circle the World in an Automobile (Touluca Lake, California: Nile Baker Estate & Boyd Production Group, 2013), pages 21-26.

imlsThis blog post is part of a series about storage relocation and improvements that we are able to undertake thanks to a grant from the Institute of Museum and Library Services.

In the course of our work as conservators, we get some very exciting opportunities. Thanks to a partnership with Hitachi High Technologies, for the past few months the conservation lab here at The Henry Ford has had a Scanning Electron Microscope (SEM) with an energy-dispersive x-ray (EDX) spectroscopy attachment in our lab.

hitachi-usWhat does this mean? It means that not only have we been able to look at samples at huge magnifications, but we have had the ability to do elemental analysis of materials on-demand. Scanning electron microscopy uses a beam of electrons, rather than light as in optical microscopes, to investigate the surface of sample. A tungsten filament generates electrons, which are accelerated, condensed, and focused on the sample in a chamber under vacuum. There are three kinds of interactions between the beam and that sample that provide us with the information we are interested in. First, there are secondary electrons – the electron beam hits an electron in the sample, causing it to “bounce back” at the detector. These give us a 3D topographical map of the surface of the sample. Second, there are back-scattered electrons – the electron beam misses any electrons in the sample and is drawn towards a positively-charged nucleus instead. The electrons essentially orbit the nucleus, entering and then leaving the sample quickly. The heavier the nucleus, the higher that element is on the periodic table, the more electrons will be attracted to it. From this, we get a qualitative elemental map of the surface, with heavier elements appearing brighter, and lighter elements appearing darker.

microsope-scanConservation Specialist Ellen Seidell demonstrates the SEM with Henry Ford Museum of American Innovation volunteer Pete Caldwell.

The EDX attachment to the SEM allows us to go one step further, to a third source of information. When the secondary electrons leave the sample, they leave a hole in the element’s valence shell that must be filled. An electron from a higher valence shell falls to fill it, releasing a characteristic x-ray as it does so – the detector then uses these to create a quantitative elemental map of the surface.

scanA ‘K’ from a stamp block, as viewed in the scanning electron microscope.

The understanding of materials is fundamental to conservation. Before we begin working on any treatment, we use our knowledge, experience, and analytical tools such as microscopy or chemical tests to make determinations about what artifacts are made of, and from there decide on the best methods of treatment. Sometimes, materials such as metal can be difficult to positively identify, especially when they are degrading, and that is where the SEM-EDX shines. Take for example the stamp-block letter shown here. The letter was only about a quarter inch tall, and from visual inspection, it was difficult to tell if the block was made of lead (with minor corrosion) or from heavily-degraded rubber. By putting this into the SEM, it was possible a good image of the surface and also to run an elemental analysis that confirmed that it was made of lead. Knowing this, it was coated to prevent future corrosion and to make it safe to handle.

Elemental analysis is also useful when it comes to traces of chemicals left on artifacts. We recently came across a number of early pesticide applicators, which if unused would be harmless. However, early pesticides frequently contained arsenic, so our immediate concern was that they were contaminated. We were able to take a sample of surface dirt from one of the applicators and analyze it in the SEM.

scan2An SEM image of a dirt sample from an artifact (left) and a map of arsenic within that sample (right).

The image on the left is the SEM image of the dirt particles, and the image on the right is the EDX map of the locations of arsenic within the sample. Now that we know they are contaminated, we can treat them in a way that protects us as well as making the objects safe for future handling.

We have also used the SEM-EDX to analyze corrosion products, to look at metal structures, and even to analyze some of the products that we use to clean and repair artifacts. It has been a great experience for us, and we’re very thankful to Hitachi for the opportunity and to the IMLS as always for their continued support.

Louise Stewart Beck is the project conservator for The Henry Ford's IMLS storage improvement grant.

technology, collections care, by Louise Stewart Beck, #Behind The Scenes @ The Henry Ford, conservation, IMLS grant



I'm very pleased to announce that The Henry Ford has launched a $150 million comprehensive fundraising campaign to help advance the workforce of tomorrow.

At The Henry Ford, we believe that access to the ideas and innovations that have shaped our country should be available to everyone, regardless of backgrounds and barriers. We want to aggressively and intentionally leverage our unique assets, both physically and digitally, to educate, influence and inspire tomorrow's leaders.

This campaign, The Innovation Project, will help The Henry Ford provide the resources necessary for us to build digital and experiential learning tools, reimagine existing exhibitions and programs, and create new opportunities to advance innovation, invention and entrepreneurship. All of this has the ultimate goal of unlocking the most powerful resource on earth: the next generation.

logoTo date, we have raised more than $90 million toward our goal. Over the course of the next five years, the work of The Innovation Project will positively impact all of our venues. From new programs and activities across the campus to cutting-edge digital enhancements to existing exhibitions, we will make connections through our Archive of American Innovation to usher in new immersive experiences that will inspire learners of all ages.

Already, we have realized enhancements made to Heroes of the Sky in Henry Ford Museum of American Innovation, courtesy of Delta Air Lines, and the new Davidson-Gerson Gallery of Glass in Greenfield Village and the Davidson-Gerson Modern Glass Gallery in the museum.

Another early success of the campaign was the recent acquisition of The STEMIE Coalition, a nonprofit global consortium of invention education stakeholders and education change agents best known for its National Invention Convention and Entrepreneurship Expo (NICEE), which we hosted this past June connecting more than 400 students from 21 states to our collection.

We are pleased to have already made so much progress, blog_COLLAGE but there is much more to do! We need your help. We want YOU to be a part of our future and join us in providing equal and unfettered access to the collection, programs, exhibitions and STEM-based learning curriculum that will help us grow the workforce of tomorrow.

Please visit theinnovationproject.org to learn how you, too, can be a part of The Innovation Project. Your belief in The Henry Ford and our mission means so much to us, and I thank you for your continued support.


Patricia E. Mooradian is President & CEO of The Henry Ford.
THF136034


1
968 World Series Official Souvenir Program, Tiger Stadium. THF 136034

It happened after the darkest year in Detroit’s history, 1967. What had started out as a police raid on an after-hours club early Sunday morning, July 23, 1967, escalated into five days and nights of uncontrolled violence, looting, and arson that left 43 people dead, 1,189 injured, and over 7,200 arrested. While civil unrest had occurred in many other cities before and during that summer, this event stood out as the largest of these uprisings to date. 

The Detroit Tigers’ season ended on a dark note that year as well, with the team losing the pennant on the final play of the final game of the season.

When the baseball season returned in 1968, everyone wondered whether the violence of the previous summer would return. Detroiters expected the worst. But, when the Tigers started winning games—in dramatic fashion with new heroes emerging daily—people had something to look forward to. They rediscovered fun. And joy. And pride.  

Exuding confidence from the start, the 1968 Detroit Tigers never lost a beat through the season. They clinched the American League pennant on September 17, 1968, with 103 wins and 59 losses—including a record-breaking 31 wins by pitcher Denny McLain. 

THF289687
1968 World Series poster, produced by Hudson’s and the Detroit Free Press, with a satirical caption referencing the popular 1963 film of that name.

Before the days of wildcard teams and inter-league division playoffs, the Tigers moved directly on to the World Series—pitted against National League (and defending World Series) champions, the St. Louis Cardinals. After a 3-1 deficit in the Series and the feeling of impending defeat, a masterful throw to home plate by Willie Horton in Game 5, a gutsy managerial decision to move centerfielder Mickey Stanley to shortstop, and three complete-game victories by pitcher Mickey Lolich (Games 2, 5, and 7) helped the Tigers stage a comeback during the last three games. On October 10, 1968, they clinched the Series. A city-wide celebration ensued, lasting until dawn. The memory has never quite been forgotten.   

This marked the first time the Tigers had won a championship since 1945, only the third time in their history, and something they have not accomplished since 1984. This was also the final Major League Baseball World Series before the 1969 team expansion and the introduction of divisional play with the League Championship Series.

THF289559
1968 World Series Souvenir Bumper Sticker, a supplement in the Detroit News. THF289559

As the donor of this bumper sticker (who was in eighth grade at the time) recalled, “Though I didn’t follow sports, I knew about the World Series, of course, and was SO proud that our hometown team would be participating. This was such a big thing that we students were allowed to watch the final game on a television rolled into our classroom (at Sacred Heart in Roseville, Michigan). That kind of thing very rarely happened—in fact, this is the only time I can recall that it did.” 

Donna R. Braden, Senior Curator & Curator of Public Life, missed the 1968 World Series but was fortunate enough to attend the last game of the Tigers World Series in 1984.

THF171197

Mrs. Potts type flatiron made by A. C. Williams Company of Ravenna, Ohio, 1893-1910. THF171197

A "Cool Hand" Who Always Came to the "Point"

In the early 1870s, a young wife and mother had a better idea for making the arduous task of ironing easier. Her name was Mrs. Potts.

At this time, people smoothed the wrinkles from their clothing with flatirons made of cast iron. These irons were heavy. And needed to be heated on a wood stove before they could be used—then put back to be reheated once again when they began to cool. (Automatic temperature control was not to be had.)   

THF171198

Mary Florence Potts was a 19-year-old Ottumwa, Iowa, wife and mother of a toddler son when she applied for her first patent in October 1870, one reissued with additions in 1872.  Mrs. Potts’ improved iron had a detachable wooden handle that stayed cool to the touch. (Conventional irons had cast iron handles that also got hot as the iron was heated on the stove— housewives had to use a thick cloth to avoid burning their hands.) Mrs. Potts’ detachable wooden handle could be easily moved from iron to iron, from one that had cooled down during use to one heated and ready on the stove. This curved wooden handle was not only cool, but also more comfortable—alleviating strain on the wrist.

Mrs. Potts’ iron was lighter. Rather than being made of solid cast iron, Mrs. Potts came up with idea of filling an inside cavity of the iron with a non-conducting material like plaster of Paris or cement to make it lighter, and less tiring, to use. (Florence Potts’ father was a mason and a plasterer, perhaps an inspiration for this idea.)

Previous iron design had a point only on one end. Mrs. Potts’ design included a point on each end, to allow the user to use it in either direction. 

THF214641

THF214642Mrs. Potts appeared on trade cards advertising her irons. This one dates from about 1883. THF214641

Mrs. Potts’ innovations produced one of the most popular and widely used flatirons of the late 19th century. It was widely manufactured and licensed in the United States and Europe with advertising featuring her image. Mrs. Potts’ iron was displayed at the 1876 Centennial Exhibition in Philadelphia. Millions of visitors attended the exhibition.

The Potts iron became so popular that by 1891, special machines were invented that could produce several thousand semicircular wood handles in a single day, rather than the few hundred handles produced daily with earlier technology. Mrs. Potts' type irons continued to be manufactured throughout the world well into the twentieth century.

THF171199

Though Mrs. Potts proved her inventive mettle with her innovative flatiron design, it appears that she did not reap spectacular financial rewards—at least by what can be discerned from census records and city directories. By 1873, the Potts family had moved from Iowa to Philadelphia, where her daughter Leona was born. They were still living there in 1880, when the census mentions no occupation given for any family member. Perhaps, if Mrs. Potts and her family became people of leisure, it was only for a time. Whether through need or desire, the Potts family had moved to Camden, New Jersey by the 1890s, where Joseph Potts and son Oscero worked as chemists. Joseph Potts died in 1901. By 1910, Florence and Oscero were mentioned as owners of Potts Manufacturing Company, makers of optical goods.

Mrs. Potts’ creativity made the tough task of ironing less onerous for millions of women in the late 19th century. And—though most are unaware—the story of the inventive Mary Florence Potts lives on in the many thousands of irons still found in places like antique shops and eBay.

Jeanine Head Miller is Curator of Domestic Life at The Henry Ford.