Past Forward

Activating The Henry Ford Archive of Innovation

Posts Tagged power

thf90342
1899 Locomobile Runabout. THF90342

The bicycle boom of the 1890s had liberated riders from the limited routes and schedules of trains and trolleys—and people wanted more. When the automobile arrived, cyclists were ready to embrace its promised freedom. The Locomobile combines railroad and bicycle technology. It’s powered by a compact version of a steam locomotive engine, and the steel-tube frame, wire wheels, pneumatic tires, and chain drive come from bicycles.

thf121652
THF121652         

Locomobile proudly identified the New York Fire Department as a customer in this 1901 advertisement.

thf88385
THF88385

Like other motor vehicles, steam cars had a limited range, in this case restricted by the amount of water and fuel they carried. Fuels such as kerosene were used to boil the water and create steam. This cutaway reveals a water tank, boiler, two-cylinder steam engine, and fuel supply under the seat.

thf206435
THF206435

Makers of steam cars hoped that people’s familiarity with steam and love of bicycle-enabled freedom would translate into sales of steam-powered automobiles.

Additional Readings:

1890s, 19th century, power, Henry Ford Museum, Driving America, cars

thf74886
Westinghouse Portable Steam Engine No. 345, Used by Henry Ford. THF140104

In 1882, 19-year-old Henry Ford had an encounter with this little steam engine that changed his life. Though initially unsure of his abilities, he served as engineer, overseeing the maintenance and safe operation of the engine for a threshing crew organized by Wayne County, Michigan farmer John Gleason. He went on to run the engine for the rest of the season, developing the skills and knowledge of an experienced engineer. This assured Henry Ford that machines--not farming--were his future.

thf119289
Pictured here with the steam engine are (left-to-right) Hugh McAlpine, James Gleason, and Henry Ford. This photograph was taken in 1920 on the Ford Farm in Dearborn. THF199289

Henry Ford never forgot this engine. Three decades later, as head of the world’s largest automobile company, he set out to find it again, sending representatives out scouring the countryside looking for the Westinghouse steam engine, serial number 345. Finally, one of his men found it in a farmer’s field in Pennsylvania. In 1912, Henry Ford purchased it from Carrolton R. Hayes, and had it completely rebuilt. Thereafter, Henry ran it regularly, often in the company of James Gleason, the brother of the man who originally bought it.

This artifact, so significant to Henry Ford’s life story, is significant in another way as well: this is the first item collected by Henry Ford that remains in our collection today.

Read more content related to The Henry Ford's 90th anniversary here.


Additional Readings:

Henry Ford Museum, farms and farming, agriculture, #Behind The Scenes @ The Henry Ford, engineering, engines, power, Henry Ford

imls-logoIn October 2017, Henry Ford Museum of American Innovation was awarded another Institute of Museum and Library Services (IMLS) grant, allowing us to continue working to catalog, conserve, package, and rehouse over 3,000 items out of our Collections Storage Building. We've had the opportunity to work with some very interesting objects for this grant, from agricultural equipment to advertisement signs. There is a wide array of objects passing through the labs, visible to the public through the windows at the back of the museum. 

This spring we treated many batteries made by Thomas Edison. Most of these originated from the late 19th century and varied in condition and composition. These early battery types consist of metal plates that were immersed in an electrolyte solution to generate electricity. The batteries themselves were stable and safe to handle because they contained no electrolyte. The batteries with unknown compositions sparked our curiosity (pun intended), since we needed to know what they were made of so that we could properly conserve them.

Sometimes while working in the lab, we need specialized equipment that we may not have on site. Fortunately, museums often work collaboratively to help each other find solutions. In this case, we collaborated with Conservation Scientist Christina Bisulca and the well-equipped analytical conservation lab at the Detroit Institute of Arts. The DIA had the right tool for the job - a high-powered optical microscope and X-ray fluorescence (XRF) spectrometer. An XRF spectrometer is essential to conservators because it is used to identify metals. It uses an X-ray beam to produce enough energy to excite electrons within the atoms of metal elements. When that energy is released, a specific signal is registered within the XRF spectrometer and the metal is identified.

imls-dia
The DIA’s XRF spectrometer analyzing the central core of one of the batteries. (Photo courtesy of Misty Grumbley.)

At the beginning of March, we brought several batteries to test at the DIA, including an Edison-Lalande battery, a Samson battery, and an Edison S-Type battery. The Edison S-type battery was particularly interesting, since we were not able to find any similar batteries to compare it to, and could not confirm the materials used through research alone.

Continue Reading

technology, power, Thomas Edison, Detroit Institute of Arts, collections care, #Behind The Scenes @ The Henry Ford, IMLS grant, conservation, by Misty Grumbley

THF124946

When Thomas Edison decided to develop a commercial lighting system he had to do far more than design a light bulb and generator: he and his collaborators had to devise the entire system -- right down to the wire insulation and fuses. Even the electrical measuring instruments that were needed to chart the progress of experiments had to be sought from other fields such as telegraphy.

Edison demonstrated his lighting system to the public for the first time in December 1879, but the system was hardly a workable commercial product. Many refinements -- to increase durability, reliability, and cost-effectiveness -- would be needed before his lighting system could be described as a competitive product. One of the most important missing elements was a meter for keeping track of customers' electricity usage. The electrical meter that Edison and his collaborators devised was an ingenious device -- an arrangement that allowed the amount of electricity a customer used to be weighed.

The meter, known as the Edison Chemical or Electrolytic Meter, was in essence a laboratory apparatus installed in the basements of customers' buildings. It consisted of two glass jars filled with a zinc sulphate solution; immersed in each jar were a pair of electrodes -- matched pairs of zinc plates. The operation was deceptively simple. A portion of the current flowing into the customer's electrical system passed through the plates, causing an electrolytic reaction. The more electricity a customer used, the more zinc would be transferred from one plate to the other. It was this difference in weight that allowed the electrical bill to be determined. Usage was calculated on a monthly basis: an Edison employee would replace the previous month's plates with a new set whose weight had already been carefully recorded. The old plates were taken away to have their weight checked and a bill calculated. The body of the meter had to be tough and tamper-proof -- hence the term "ironclad" that was used to describe this all-metal meter. Later units were wooden boxes with a metal door. In either case, the enclosure was secured with the kind of lead seal that is still used to guard modern electric or gas meter mechanisms.

Meters like this remained in service in some installations well into the 1890s. Many customers were distrustful of this metering method, asserting that the plate removal and remote calculations allowed them no way of checking whether the company was padding their bills. Modern numerical meters allow consumers to see a read-out of their electricity, gas, or water usage. However, the meters' settings -- and indeed the consistency of different meters -- is still something we trust to the utility company.

Continue Reading

home life, by Marc Greuther, power, electricity, Thomas Edison

THF67890

Tucked away among the rolling stock and locomotives on display in Henry Ford Museum of American Innovation is an unassuming piece of railroad equipment, modest and apparently devoid of style or character. This little locomotive is one of the most significant items in the collection. It is one of the first locomotives to successfully use internal combustion instead of steam as its power source.

The decline of steam
By the mid-1920s the design and development of steam locomotives had become rigorous and scientific. The dominance of steam, however, was being challenged. Could the internal combustion engine with its higher efficiency, ease of operation, and reliance on cheap fuel become an alternative power source for railroad operations? Smoke abatement rulings in Chicago and New York City provided a further incentive for researching alternatives to steam power.

Success with internal combustion
General Electric's internal combustion engine/railroad interests dated back to 1904. However, by 1920 they had not developed a suitable engine. In late 1923, the Ingersoll-Rand Company successfully developed a locomotive to General Electric's specifications. Over the next 13 months it was tested on 10 different railroad systems. Its success led to a production run of variant engines that ended in 1937 when Ingersoll-Rand withdrew from the locomotive-building field.

Cheaper than steam
The American Locomotive Company supplied the car bodies for these early locomotives. Assembly took place at the General Electric plant in Erie, Pennsylvania. Ingersoll-Rand supplied the engines, building their sales pitch around low operating cost. Number 90, the sixteenth unit built, was delivered in December 1926 and used as a promotional demonstrator, switching in Ingersoll-Rand's Phillipsburg, New Jersey, plant rail yards. 

THF271020
Ingersoll-Rand's Number 90 Diesel-Electric Locomotive, Phillipsburg, New Jersey, probably 1926. THF271020

Efficient design
Number 90's blunt appearance hardly suggests speed or glamour, but compared to steam locomotive switchers its angular outline appears neat and businesslike. The operator's positions -- located at either end -- are clean and tidy, partitioned from the heat of the engine, located in the center of the car. The locomotive's operation is streamlined even if its style is minimal. Subsequent collaborations between industrial designers and railroad companies produced locomotive designs that would further emphasize Number 90's utilitarian appearance.

The job of the switcher
Switchers worked out their years in dirty yards assembling the freight trains that were as much a part of the railroad experience as the fastest overnight express. Number 90 continued in use as a switcher in the Ingersoll-Rand plant until the late 1960s by which time the diesel revolution that it had helped begin had swept steam power aside in the United States.


Maker:
General Electric/Ingersoll-Rand/American Locomotive Company
Engine: 6-cylinder diesel
Horsepower: 300 @ 550 rpm.
Displacement: 5655 cu. in.
Generator: 200 kilowatts, 600 volts
Traction motors: 4 @ 95 horsepower each
Weight:  60 tons
Tractive effort: 36,000 lbs.
Speed: 30 mph.
Gift of Ingersoll-Rand Company

Marc Greuther is Chief Curator and Senior Director of Historical Resources at The Henry Ford.


Additional Readings:

New Jersey, railroads, power, Pennsylvania, Henry Ford Museum, by Marc Greuther, 20th century, 1920s

THF164679

Bergmann & Company Edison Chemical Meter, Used at the City Hotel, Sunbury, Pennsylvania, 1883. THF164679

imls-logoAs work progresses on the Electrical Collection thanks to an Institute of Museum and Library Services grant, the fascinating context in which these objects were used is discovered. This Edison chemical meter used at the City Hotel in Sunbury, Pennsylvania, the first hotel commercially wired for electricity, and was part of the first three-wire power system in the world.

THF253939Following the success of the Edison Electric Illuminating Company of New York, the first central power station in the world, Thomas Edison sent his agent, P. B. Shaw, to find other ideal locations for more central power stations. The locations needed to have high gas prices to make the switch to electric lights appealing, and inexpensive fuel to help compete in the lighting business.

Shaw traveled the Coal Region of Pennsylvania to find a place that met the criteria, and organized multiple Edison Electric Illuminating Companies including Shamokin (1882), Sunbury (July 1883), and Mount Carmel (November 1883). The site selected in Sunbury backed up onto a stream flowing down from Shamokin, which would deposit coal on its banks after heavy rainfall or melting snow. Sunbury’s high cost of gas, free coal, and proximity to water meant that it was the perfect location for a power plant; however, the location was outside the town’s business center, which would add to the cost due to the length of wires needing to be strung from the power plant to potential customers.

To offset costs, Edison took a party of potential donors on his electric railway to demonstrate his innovative technology. After the demonstration, Edison was inspired to improve his two-wire system in use in New York by adding a third-wire to act as a neutral line, as well as using two dynamos to generate 220 volts while still allowing 110 volt lamp usage to ensure consistent distribution of power throughout the long wires. After a brief test, Edison applied for a patent and the three wires with conductors were strung to the City Hotel, thus making it the first building to be commercially wired for electricity and Sunbury the first city to have three wire commercial direct current incandescent lighting and overhead conductors.

On July 4, 1883, the City Hotel of Sunbury became the first building lit with incandescent carbon-filament light bulbs using the three wire system. To measure the electricity used by the hotel, an Edison Chemical Meter, one of the first electric wattmeters, was installed. These electrolytic meters measured electricity through electroplating, but needed to be removed and measured at the central station in order to bill customers. The meters were reliable, despite the cumbersome method for billing, but were phased out in the 1890s and replaced by mechanical meters, which were easier to read.

Laura Lipp Myles is Collections Specialist at The Henry Ford.

Additional Readings:

lighting, Thomas Edison, power, electricity, by Laura Myles, IMLS grant

imls-logoWhile researching the many electrical objects being digitized as part of the Institute of Museum and Library Sciences grant, a few stories have stood out to me. These stories sometimes involve the people behind the scenes: manufacturers, inventors, etc., and other times are about how the object was used. Below are four such objects and their stories.

This Jenney Electric Motor Company rheostat has uncovered an interesting story about the company’s namesake. It was designed by Charles G. Jenney who was awarded a patent for it in 1892. Jenney, originally from Ann Arbor, Michigan, moved to Fort Wayne, Indiana with his father to design and produce electrical equipment for the Fort Wayne Jenney Electric Light Company. On February 27, 1885, Jenney, who had been contracted to the Fort Wayne Jenney Electric Light Company by his father while still a minor, successfully petitioned to be removed from the company, and, a month later, he founded the Jenney Electric Light Company later the Jenney Electric Company. The Jenney Electric Company was demonstrating Jenney’s dynamos, arc lamps, and incandescent lamps by August that same year. This company was bought out and Jenney started again, this time with the Jenney Electric Motor Company in 1889 for which he produced electrical equipment like this rheostat, filed for more patents, and wired and lit the streets of Indianapolis.

Continue Reading

20th century, 19th century, power, IMLS grant, electricity, by Laura Myles

imls-logoAs we start a new year, it’s a good time to look back on the first half of The Henry Ford’s IMLS-funded grant to work on electrical objects, and to take stock for the future.

We had a busy and productive fall 2016, with some new adventures thrown in with continuing progress on objects themselves. If you haven’t already seen them, you should check out our Facebook Live videos – we’ve done a few so far (in October, November, and December), and the plan is to continue doing them on the first Friday of each month.

imls-5Gaulard & Gibbs transformer on the shelf before treatment (29.1333.229).

This Gaulard & Gibbs transformer had several conservation issues when we first saw it, most notably that the wooden base had broken under the strain of the weight of the object itself. You can see this in the before picture, where the object is lying on its side because it cannot stand anymore. There are also faint hints of color along the metal tabs that run up the body of the object.

imls-4The Gaulard and Gibbs transformer after treatment (29.1333.229).

You can see that this transformer had a fantastic transformation during conservation treatment – simply removing years of built-up dust revealed a very vivid red and black coloration. The broken wooden base was also very successfully repaired, and it is now possible for the object to stand on its feet again. When it’s packed for storage, it will be lying down again, so that the weakened wooden base isn’t put under too much strain for long periods of time.

We featured this object briefly in our Facebook Live videos – you may have noticed, if you tuned into both, that you could see the ‘before’ and ‘after’ as they happened.

imls-3
The interior of a meter, with strange accretions on white enameled metal. Note that this view is of the reverse of the top face (29.1333.63)

We’ve also encountered some interesting materials and material problems in the first half of our IMLS grant work. One of the most interesting was this strange accretion, found on the interior of a meter. Those brownish bulbs appeared to be seeping into the object from the top, but were only present on the enameled portions of the metal. They were friable and lighter on the inside than the outside. We looked at samples under the microscope, and even attempted to culture a sample, in case it’s a type of mold (it does not appear to be). We’re still not sure what exactly they are, but we will continue to try to figure it out! Mysteries of the museum, indeed.

imls-2An ohmmeter with a great example of hard rubber – note that the cylindrical casing which would usually go over the black area is removed in this photo (31.1217.235)

We have also recently come across a fantastic example of perfectly preserved hard rubber. The base of the object is one solid slab of hard rubber, but the protected interior area has retained the original black, mirror-like finish. The discoloration and matte surface of hard rubber occurs primarily from light exposure over time, and the colors possible range from a light black to the red-brown color on this object. We’ve put the exterior cylindrical case back on the object, sealing it well, so that the very tight case can continue to preserve this fantastic interior. 

imls-1Conservator Cuong Nguyen and Conservation Technician Andrew Ganem working on motors in their lab.

We have also been very fortunate to have Cuong and Andrew working with us for a little while. They're tackling some larger motors, which take longer to complete. Their help allows Conservation Specialist Mallory Bower and I to continue to work at the pace necessary to keep the project on target, while ensuring that as much of the collection as possible is treated. We greatly appreciate their help.

As always, this is only a small sampling of what we have been up to on the IMLS project. Please feel free to stop by our window at the back of the museum and see what we’re working on – there is always something interesting on our desks. Keep your eyes peeled for our next Facebook Live, as well. As we continue to move into 2017 and are fully into the second half of the project, we are excited to continue our work and continue keeping you updated

Louise Stewart Beck is former IMLS Project Conservator at The Henry Ford.

Additional Readings:

power, electricity, by Louise Stewart Beck, collections care, conservation, IMLS grant

THF166729

imls-logo
We are a little over halfway through our project to digitize artifacts from our electrical distribution collections, generously funded through a grant from the Institute of Museum and Library Services (IMLS). As of the end of November, 357 of these artifacts were available in our Digital Collections, and of those, nearly half were meters of some variety—ammeters, voltmeters, wattmeters, etc.

While the project team is suffering from a bit of meter overload (no pun intended), every once in a while one catches our eye for some reason or other. One recent example is this Fort Wayne Prepayment Meter, which allowed energy customers to insert coins to start electricity flowing, rather than being billed for usage after the fact. 

If you’d like to learn more about our work on this grant, visit our Digital Collections to browse electricity-related artifacts, or like us on Facebook to see live behind-the-scenes updates from the Conservation Labs (previous updates can be viewed on our Facebook video page).

Ellice Engdahl is Digital Collections & Content Manager at The Henry Ford.

Additional Readings:

electricity, power, IMLS grant, by Ellice Engdahl, digital collections

THF256535

If you’ve walked through “With Liberty and Justice for All” in Henry Ford Museum, you’re familiar with the long and complicated history of social transformation, including civil rights and race relations, in America. Some artifacts, like the Rosa Parks Bus, are primary sources in this story, but we also hold collections that offer a more oblique take, such as about 100 photo negatives we’ve just digitized relating to five days of civil unrest in Detroit in July 1967.

The images come from Detroit Edison, which was charged with the very normal work of restoring electricity under very abnormal conditions. While the photos primarily document the power company’s work in the wake of the unrest, the events of the preceding days and their aftermath are omnipresent, as you can see in this image. We undertook this digitization project as part of our participation in “Detroit 67: Looking Back to Move Forward,” “a multi-year community engagement project of the Detroit Historical Society that brings together diverse voices and communities around the effects of an historic crisis to find their place in the present and inspire the future.”

During 2017, we shared more collections-based stories related to the complex roots of, and reactions to, Detroit 67, in keeping with our mission to inspire people to help shape a better future. For now, visit our Digital Collections to browse all of the July 1967 Detroit Edison images.

Ellice Engdahl is Digital Collections & Content Manager at The Henry Ford. This post was last updated in July 2020.

Additional Readings:

1960s, 20th century, power, Michigan, electricity, digital collections, Detroit, by Ellice Engdahl, African American history