Past Forward

Activating The Henry Ford Archive of Innovation

Posts Tagged by kristen gallerneaux

Collage poster with text and image of two women in a landscape with a woven circle or basket behind them
Poster, "Together, We Are Power," 2020 / THF626365


In honor of Indigenous Peoples’ Day, The Henry Ford would like to share our recent acquisition of two posters. Designed by artist Mer Young for the Amplifier Foundation in partnership with Nia Tero and IllumiNative, these graphics were created in support of a land stewardship campaign and timed to drive participation of the Native American vote during the 2020 presidential election.

Mer Young (Hidalgo Otomi and Mescalero-Chiricahau Apache) is an artist focusing on narratives that “inspire, celebrate and elevate repressed indigenous, first nations and native cultures and women of color” as well as issues related to immigration rights, equality, and the Black Lives Matter movement. These posters use digital collage techniques and were designed to be activated with augmented reality.

Collage poster with image of two women in landscape with circular graphic pattern behind them
Poster, "Vote in Solidarity," 2020 / THF626361

In 1992, Indigenous Peoples’ Day was officially adopted in Berkeley, California, as an alternative to Columbus Day. Cities across the country have since adopted the holiday, including several in Michigan. This counter-celebration addresses the controversy over the “discovery” of the Americas by Christopher Columbus—and the suffering of First Peoples under the violence of European colonization and settlement that followed. Indigenous Peoples’ Day is a way to express solidarity and acknowledge this history while celebrating Native American history, culture, and communities.

For culturally sensitive activities and resources for Indigenous Peoples’ Day, check out “Unlearning Columbus Day Myths” from the Smithsonian National Museum of the American Indian.


Kristen Gallerneaux (Métis-Wendat) is Curator of Communications & Information Technology at The Henry Ford.

technology, art, by Kristen Gallerneaux, voting, posters

On August 12, 1981, as members of the press gathered in the Waldorf-Astoria ballroom in New York City, one of the largest technology companies in the world was about to make an announcement. At the time, the name “IBM” was mostly associated with the room-sized installations of mainframe computers that the company had become famous for in the 1950s. They cost millions of dollars to purchase, needed their own air-conditioned rooms, and required specially trained staff. They were found in large corporations, universities, and research facilities—but not in a typical home. That was about to change with the introduction of the IBM Model 5150, also known as the IBM PC.

Horizontal computer processor with two disk drives, monitor, and keyboard
An IBM 5150 PC, circa 1984. / THF156040

The idea of internally producing a small, affordable computer was at odds with IBM’s corporate culture. One naysayer remarked that “IBM bringing out a personal computer would be like teaching an elephant to tap dance." Nonetheless, a development team was formed, and the lofty goal of completing the project in one short year was established. “Project Chess” began its race toward the finish line. The team of twelve was fronted by Don Estridge and Mark Dean, who designed the ISA bus (an interface allowing easy expansion of memory and peripherals) and color graphics system.

Part of the success story of designing the 5150 in such a short span of time is an exception to a long-standing IBM company rule: the engineers were allowed to include technology made by outside companies, rather than building every aspect of the PC, from the ground up, themselves. This is why the IBM PC uses an Intel 8088 microprocessor, can run on Microsoft DOS, and is compatible with software made by other companies. It was also released under an open architecture model—a philosophy that would soon lead to a flood of PC-inspired “clones.”

Computer (which looks like a large typewriter) and cassette tape player
An Atari 800 computer: an early attempt by a video game company to harness the home computing market. / THF155976

In truth, the IBM PC was not the first small home computer, and by entering this market, the company would face competition from Commodore, Atari, Tandy, and Apple—all of whom had produced successful microcomputers beginning in the mid-1970s. To match the wide reach of these rivals, IBM sold their machines at convenient retailers like Sears and ComputerLand. Importantly, it was affordable by 1981 standards at an introductory price of $1,565. And… it fit on your desktop.

A positive effect of IBM creating a PC is that it helped to legitimize the notion of home computers beyond specialists and the home hobbyist crowd. IBM was essentially a well-recognized “heritage brand” by 1981, so the type of consumers reluctant to invest in a computer produced by a scrappy start-up were suddenly scrambling to put deposits down for a 5150. Whereas as “young” computing companies (many of which started out as video game companies) were under threat of being swallowed up in a competitive market, IBM projected an aura of measured reliability and was trusted to stick around.

White button with silhouette image of Charlie Chaplin sitting in a chair that appears to be falling backwards at a table that holds a computer and vase of flowers; also contains text
A button advertising the IBM PC. / THF323543

Ironically, while IBM’s plan was to break out of the office and into the home, PCs were purchased in bulk by businesses to populate desks and cubicles. A visual unity was established in office environment—fields of putty gray and beige personal computers.

The IBM 5150 arrived at an important “boom” moment in computing history. It is evidence of an established company challenging its established design modes by harnessing emerging technologies. And IBM’s decision to pivot proved to be a timely decision too, since affordable microprocessors began to render behemoth, expensive mainframes largely obsolete. But most importantly, the IBM PC—and the wave of computers like it that followed—were designed with the non-specialist in mind, helping to make the personal computer an everyday device in people’s homes.


Kristen Gallerneaux is Curator of Communications and Information Technology at The Henry Ford.

home life, technology, computers, by Kristen Gallerneaux

Deborah Sussman began her design career as an intern at the Eames Office in 1953.  There, over the course of a decade, she was promoted to an art director and worked on graphic design, exhibitions, films, toy design, packaging, and photography. In 1963, she acted as designer for the “Beware of Imitations” image below, with Charles and Ray Eames as creative directors. Appearing as an advertisement in Arts & Architecture magazine, it celebrated Eames-designed furniture produced by Herman Miller. The image is a fascinating herald, hinting at how Sussman’s approach toward the power of large-scale graphics to communicate within environments would define her future vision.

Page with background of brick wall in black-and-white topped with "poster" of chairs in black and white and text and pointing hand icons in red
Herman Miller “Beware of Imitations” Advertisement. / THF147716

The foundation image was printed to poster size and affixed to the outside wall of the Eames Office, where it was photographed in situ. The weathered brick wall, scrabbly Californian plant life, and spray-painted stencil additions surrounding the paste-up add texture to the image, revealing it to be evidence of a process. An image at the Library of Congress takes us one step further into this moment, revealing Sussman pasting up the original work.  

Black-and-white image of flowers and text "ZEELAND, MICHIGAN" against brick wall on left; on right images of people and chairs and red pointing finger icons
Detail. / THF147716

If you look closely toward the bottom left of this image, you will also see a bouquet of flowers on a placard with the text, “Zeeland, Michigan.” Zeeland is, of course, home to the Herman Miller company, but the floral design has its own interesting lifespan. It appears on Herman Miller’s stock certificates and on the underside of a kiosk designed by the Eames Office for the IBM Pavilion at the 1964 New York World’s Fair. Sussman is credited with contributing to both projects. 

Colorful tent-like structure with thin poles supporting a colorful roof and topped with flags
Kiosk from the IBM Pavilion at the 1964 New York World’s Fair. / THF156766

Image of flowers in a white rectangle, surrounded by taupe, blue, and white geometric shapes highlighted with pinstriping
Detail of the underside of the IBM Kiosk. / THF171121

Sussman left the Eames Office temporarily to continue her design studies through a Fulbright scholarship in Germany, but was eventually “lured back” to California to work on the Mathematica exhibit. When The Henry Ford acquired the 1964 version of the Mathematica exhibit (now on permanent view in Henry Ford Museum of American Innovation), extensive research was undertaken in the Charles & Ray Eames Papers at the Library of Congress to create the most historically accurate version of the exhibit possible. Photographs at the Library of Congress documented numerous contributions made by women to the exhibit’s design, including Sussman, Ray Eames, and many others. Sussman, for her part, once recounted setting the type for the mathematician biographies that appear on the History Timeline and also appears in a photograph working on the graphics for the base of the Multiplication Cube interactive.

Image with colorful graphics, drawings, and text
Detail of the Multiplication Cube from the Eames Office-designed Mathematica exhibit. / THF164150

Busy panel with many strips of text and images
Detail of the History Timeline in Mathematica. / THF170845

In 1968, Sussman formed an independent design practice as Sussman/Prejza & Co. with her husband, Paul. Together they designed things like the “urban branding” for the cities of Long Beach and Santa Monica, California, and wayfinding signage for Walt Disney World and EuroDisney. Her favorite kind of work involved vibrant, larger-than-life graphic and typographic treatments installed in architectural spaces and outdoor urban areas. For this work, she is credited as a pioneer of “environmental design” and “Supergraphics.”

Page with text, colorful graphics, and photo of people playing instruments in front of a colorful backdrop or grandstand
Design Preview / Brand Identity Guidelines for the 1984 Los Angeles Olympics. / THF287946

This approach is especially obvious in her design identity work for the 1984 Los Angeles Olympics. The look and feel of the LA Olympics—created by Sussman/Prejza & C0. in collaboration with the Jerde Partnership—transformed the city of Los Angeles. The holistic plan was for “an energetic montage of color and form [to] appear on everything from tents to tickets.” There were 43 art installations, 28 game venues, 3 Olympic villages, and wayfinding signage. There was a monumental 145-foot tower of colorful scaffolding erected in Exposition Park. Color-coded gateways and walkways lined with concrete “Sonotubes” wrapped in bright abstract graphics. Uniforms for officials and volunteers.

Colorful page with large graphic characters "L A 8 4"
Design Quarterly #127. / THF287955

Large colorful tower with decorative scaffolding and images of stars, geometric shapes, and Olympic rings
Detail from Design Quarterly #127. / THF287972

An entire issue of Design Quarterly was dedicated to the project, in which the designers explained their hopes for a successful event as “a modern environment that recalls the imageable qualities of a medieval jousting festival” and one that anticipated that “the city will be transformed overnight, as if an invasion of butterflies has descended upon it.”

White banner with colorful graphic characters "L A 8 4" and additional text "WELCOME" and "OLYMPICS"
Souvenir Street Banner designed by Deborah Sussman for the LA 1984 Olympics. / THF171692

Color played an essential role in unifying the visual language of color, graphics, and typographic treatments. Notably, Sussman broke away from the palette of traditional red, white, and blue, and captured the “Southern California spirit” through shades of vibrant magenta, vermillion, aqua, purple, and sunset orange. A favorite quote in the Design Quarterly issue states: “The glorious colors—the banners, the kiosks and booths, even the trash cans and hot dog napkins—were happily original, all Toyland confetti, in light and airy shades all their own. We get enough of red-white-and-blue everywhere else, don’t we?”

Partial credit to Sussman’s approach can be connected to her early training at the Eames Office, where her mentors emphasized the value of playfulness. There, she had the opportunity to document festivals in other countries. She learned to appreciate folk art and the indigenous cultures of the Pacific Rim. And the “kit of parts” approach to design was part of everyday life at the Eames Office too, which undoubtedly influenced Sussman’s own adaptable “visual alphabet” for the 1984 LA Olympics. Today, her contributions for this and other projects stand as beloved and masterful examples of environmental graphic design. Like many designers who passed through the Eames Office, Deborah Sussman took what she learned, remixed it, and made it an evolved and color-saturated language all her own.


Kristen Gallerneaux is Curator of Communications & Information Technology at The Henry Ford.

Henry Ford Museum, Herman Miller, women's history, design, sports, by Kristen Gallerneaux, #THFCuratorChat

Black man with beard and mustache in shirt and tie sits by a computer and television and smiles at camera
Jerry Lawson, circa 1980. Image from
Black Enterprise magazine, December 1982 issue, provided courtesy The Strong National Museum of Play.

In 1975, two Alpex Computer Corporation employees named Wallace Kirschner and Lawrence Haskel approached Fairchild Semiconductor to sell an idea—a prototype for a video game console code-named Project “RAVEN.” Fairchild saw promise in RAVEN’s groundbreaking concept for interchangeable software, but the system was too delicate for everyday consumers.

Jerry Lawson, head of engineering and hardware at Fairchild, was assigned to bring the system up to market standards. Just one year prior, Lawson had irked Fairchild after learning that he had built a coin-op arcade version of the Demolition Derby game in his garage. His managers worried about conflict of interest and potential competition. Rather than reprimand him, they asked Lawson to research applying Fairchild technology to the budding home video game market. The timing of Kirschner and Haskel’s arrival couldn’t have been more fortuitous.

Black man in suit with flower in boutonnière sits by a counter full of scientific equipment and examines yarn or fiber
A portrait of George Washington Carver in the Greenfield Village Soybean Laboratory. Carver’s inquisitiveness and scientific interests served as childhood inspiration for Lawson. / THF214109

Jerry Lawson was born in 1940 and grew up in a Queens, New York, federal housing project. In an interview with Vintage Computing magazine, he described how his first-grade teacher put a photo of George Washington Carver next to his desk, telling Lawson “This could be you!” He was interested in electronics from a young age, earning his ham radio operator’s license, repairing neighborhood televisions, and building walkie talkies to sell.

When Lawson took classes at Queens and City College in New York, it became apparent that his self-taught knowledge was much more advanced than what he was being taught. He entered the field without completing a degree, working for several electronics companies before moving to Fairchild in 1970. In the mid-1970s, Lawson joined the Homebrew Computer Club, which allowed him to establish important Silicon Valley contacts. He was the only Black man present at those meetings and was one of the first Black engineers to work in Silicon Valley and in the video game industry.

Refining an Idea


Box with image of boxy video game system, cartridges, and stick controllers, along with text
Packaging for the Fairchild Channel F Video Entertainment System. / THF185320

With Kirschner and Haskel’s input, the team at Fairchild—which grew to include Lawson, Ron Smith, and Nick Talesfore—transformed RAVEN’s basic premise into what was eventually released as the Fairchild “Channel F” Video Entertainment System. For his contributions, Lawson has earned credit for the co-invention of the programmable and interchangeable video game cartridge, which continues to be adapted into modern gaming systems. Industrial designer Nick Talesfore designed the look of cartridges, taking inspiration from 8-track tapes. A spring-loaded door kept the software safe.

Boxy yellow game cartridge with graphic label containing text, next to black box with graphics and text
Boxy gray cartridge with square label containing text and photo of five people in front of a black-and-white striped backgroundA Fairchild “Video-Cart” compared to a typical 8-track tape. / THF185336 & THF323548

Until the invention of the video game cartridge, home video games were built directly onto the ROM storage and soldered permanently onto the main circuit board. This meant, for example, if you purchased one of the first versions of Pong for the home, Pong was the only game playable on that system. In 1974, the Magnavox Odyssey used jumper cards that rewired the machine’s function and asked players to tape acetate overlays onto their television screen to change the game field. These were creative workarounds, but they weren’t as user-friendly as the Channel F’s “switchable software” cart system.

Boxy brown and black video game console with adapter and box with text and graphics in orange, yellow, and black
THF151659

Jerry Lawson also sketched the unique stick controller, which was then rendered for production by Talesfore, along with the main console, which was inspired by faux woodgrain alarm clocks. The bold graphics on the labels and boxes were illustrated by Tom Kamifuji, who created rainbow-infused graphics for a 7Up campaign in the early 1970s. Kamifuji’s graphic design, interestingly, is also credited with inspiring the rainbow version of the Apple Computers logo.

Boxy brown-and-black gaming console with two stick-shaped controllers
The Fairchild Video Entertainment System with unique stick controllers designed by Lawson. / THF185322

The Video Game Industry vs. Itself


The Channel F was released in 1976, but one short year later, it was in an unfortunate position. The home video game market was becoming saturated, and Fairchild found itself in competition with one of the most successful video game systems of all time—the Atari 2600. Compared to the types of action-packed games that might be found in a coin-operated arcade or the Atari 2600, many found the Channel F’s gaming content to be tame, with titles like Math Quiz and Magic Numbers. To be fair, the Channel F also included Space War, Torpedo Alley, and Drag Race, but Atari’s graphics quality outpaced Fairchild’s. Approximately 300,000 units of Channel Fun were sold by 1977, compared to several million units of the Atari 2600.

Rotating GIF featuring colorful images of various game cartridges next to their graphic boxes
Channel F Games (see them all in our Digital Collections)

Around 1980, Lawson left Fairchild to form Videosoft (ironically, a company dedicated to producing games and software for Atari) but only one cartridge found official release: a technical tool for television repair called “Color Bar Generator.” Realizing they would never be able to compete with Atari, Fairchild stopped producing the Channel F in 1983, just in time for the “Great Video Game Crash.” While the Channel F may not be as well-known as many other gaming systems of the 1970s and 80s, what is undeniable is that Fairchild was at the forefront of a new technology—and that Jerry Lawson’s contributions are still with us today.


Kristen Gallerneaux is Curator of Communications & Information Technology at The Henry Ford.

toys and games, video games, technology, making, home life, engineering, design, by Kristen Gallerneaux, African American history

Print with red, white, and blue graphic bars with text and images inside them
Print Portfolio, "We Shall Overcome," 1963 / THF93153

In August 1963, 250,000 people gathered in the U.S. capital to participate in the “March on Washington.” They gathered to demand effective civil rights legislation, to end racial discrimination and school desegregation, and for fair housing and employment opportunities.

These silkscreen prints, on exhibit in With Liberty and Justice for All in Henry Ford Museum of American Innovation, belong to a portfolio created by artist Louis Lo Monaco. In partnership with the National Urban League, 500 portfolios were sold for one dollar each as a fundraiser for the March. A pamphlet inside the portfolio’s front pocket anticipated the event would be “a living petition … it will be orderly, but not subservient. It will be proud, but not arrogant. It will be non-violent, but not timid.”

Lo Monaco’s portfolio of five collages “remixed” troubling photographs from Life magazine. They depicted “instruments of brutality” and threats to Democracy: a police attack dog, a firehose turned on a protester, hate symbols, and a Black man imprisoned behind the stripes of the American flag. The portfolio’s introductory text tells us: “This memento … will inspire us to assert man's decency and goodness through an understanding of anguish."

Print with image of Black man behind red bars with blue and white stars nearby
One of the prints from the “We Shall Overcome” Print Portfolio: "A Jail Can Only Hold a Man's Body - His Mind and Heart Remain Free”  / THF93154

This visual memento remains a powerful and relevant reminder, even today. It mirrors recent imagery of systemic racism and ongoing protests in America—almost 60 years later. It reminds us that every day, Black, Indigenous, and People of Color are unfairly asked to put themselves at risk to simply live within and speak out against a culture of imbalance.

Expressive print imagery and graphic design was—and continues to be, today—a powerful vehicle for communication at political protests. Far from being static documents, portable images like those created by Lo Monaco help to inspire communal action, equitable justice, and peace.


This post was adapted from a stop on our forthcoming “Stories of Black Empowerment” tour of Henry Ford Museum of American Innovation in the THF Connect app, written by Kristen Gallerneaux, Curator of Communications & Information Technology at The Henry Ford. To learn more about or download the THF Connect app, click here.

Civil Rights, Henry Ford Museum, by Kristen Gallerneaux, African American history, art

The Henry Ford acquires a poster portfolio as a way to document one of the largest protest movements in U.S. history

GIF with multiple images of posters with a few large bold words each
About half of the Signal-Return solidarity posters acquired by The Henry Ford.

Justice Can’t Wait,” “Make Good Trouble,” “No Justice No Peace.” These are just a few of the messages that appear in a collection of letterpress posters recently acquired from Signal-Return printshop by The Henry Ford. In the history of well-designed posters, brevity of words and a strong visual impact work together to communicate messages at a glance. Boldly capitalized, imprinted in flat black ink on brown or white chipboard by the embossing strike of a printing press—these posters are meant to generate a feeling of urgency.

In early June 2020, Detroit’s nonprofit letterpress organization Signal-Return responded to the civil unrest sparked by the deaths of George Floyd, Breonna Taylor, Ahmaud Arbery, and others by producing free protest posters. The project was undertaken in solidarity with the principles behind the Black Lives Matter movement, with the intent that the posters would be carried by supporters in protests.

GIF with multiple images of posters with a few large bold words each
The remainder of the Signal-Return solidarity posters acquired by The Henry Ford.

Using social media to spread the word about their project, Signal-Return offered to create small batches of custom posters for the metro Detroit community, free of charge. As stated in their announcement, “The printing press has been, since its invention, a powerful tool of protest and an agent of change. Let us provide posters to aid in this effort.” Each recipient was asked to submit a concise five-word message through an online form. A few days later, the posters were ready for pickup “social distance style” across the roped-off front entry of the printshop. Many of these posters were visible throughout Detroit in the summer of 2020 at protests and taped to store windows, streetlight poles and freeway overpasses.

Storefront in brick building with posters hanging in windows and a table with bins of posters in front
Signal-Return Letterpress Shop, Detroit, Michigan, June 2020 / THF610910

By September 2020, Signal-Return’s director, Lynne Avadenka, counted a total of 168 individual requests. Some requests repeated popular protest language of the day, while others were entirely unique and personal. Thanks to Signal-Return’s donation, The Henry Ford has acquired a portfolio of 44 examples as a way to document one of the largest protest movements in the history of the United States. The method by which they were acquired—called “rapid response collecting” by museum professionals—allows museums to collect stories of current events and major moments in history as they unfold.


Kristen Gallerneaux is Curator of Communications and Information Technology at The Henry Ford. This story was originally published in the January–May 2021 issue of The Henry Ford Magazine, available on Issuu.

The Henry Ford Magazine, Michigan, Detroit, communication, posters, by Kristen Gallerneaux, African American history, printing

Empty auditorium with rows of seats and stage with curtains, a large screen with a piece of equipment projected on it, and several people on the stage

The auditorium at the 1968 Fall Joint Computer Conference before guests arrive. / THF610598

The setting is sparse. The downward sweep of theatre curtains, a man seated stage left, backed by a hinged office cubicle wall. Technology in this image is scarce, and yet it defines the moment. A video camera is perched on top of the wall, its electronic eye turned downwards to surveil a man named Douglas Engelbart, seated in a modified Herman Miller Eames Shell Chair below. A large projection screen shows a molded tray table holding a keyboard at its center, a chunky-looking computer mouse made of wood on the right side, and a “chording keyboard” on the left. Today, we take the computer mouse for granted, but in this moment, it was a prototype for the future.

The empty auditorium chairs in this image will soon be filled with attendees of a computer conference. It is easy to imagine the collective groan of theater seating as this soon-to-arrive audience leans a little closer, to understand a little better. With the click of a shutter from the back of the room, this moment was collapsed down into the camera lens of a young Herman Miller designer named Jack Kelley. He knew this moment was worth documenting because if the computer mouse under Douglas Engelbart’s right hand onstage was soon going to create “the click that was heard around the world,” this scene was the rehearsal for that moment.

Three-ring binder black-colored page with a photo of entrance doors and a marquee with text; two people in front of doors
Entrance to the 1968 Fall Joint Computer Conference, San Francisco Civic Auditorium. / THF610636

“The Mother of All Demos”

On December 9, 1968, Douglas Engelbart of the Stanford Research Institute (SRI) hosted a session at the Joint Computer Conference at the Civic Center Auditorium in San Francisco. The system presented—known as the oNLine System (or NLS)—was focused on user-friendly interaction and digital collaboration.

Man sitting in chair with attached console, with video cameras pointed at him; another man to side
Douglas Engelbart demonstrates the oNLine System. / THF146594

In a span of 90 minutes, Engelbart (wearing a headset like the radar technician he once was) used the first mouse to sweep through a demonstration that became the blueprint for modern computing. For the first time, computing processes we take for granted today were presented as an integrated system: easy navigation using a mouse, “WYSIWYG” word processing, resizable windows, linkable hypertext, graphics, collaborative software, videoconferencing, and presentation software similar to PowerPoint. Over time, the event gained the honorific “The Mother of all Demos.” When Engelbart was finished with his demonstration, everyone in the audience gave him a standing ovation.

Fixing the Human-Hardware Gap

In 1957, Engelbart established the Augmentation Research Center (ARC) at SRI to study the relationship between humans and machines. It was here, in 1963, that work on the first computer mouse began. The mouse was conceptualized by Engelbart and realized from an engineering standpoint by Bill English. All the while, work on NLS was percolating in the background.

Page from three-ring binder containing photo of man sits in chair with attached console with feet up on a nearby table that also holds what appears to be a large monitor; office furniture around him
Douglas Engelbart kicks back with the NLS at the Stanford Research Institute (SRI). / THF610612

While Engelbart was gearing up to present the NLS, Herman Miller Research Corporation’s (HRMC’s) president and lead designer Robert Propst was updating the “Action Office” furniture system. Designed to optimize human performance and workplace collaboration, Action Office caught Engelbart’s attention. He was excited by its flexibility and decided to consult with Herman Miller to provide the ideal environment for people using the NLS. Propst sent a young HMRC designer named Jack Kelley to California so he could study the needs of the SRI group in person.

Two men, one seated and one standing, among office furniture holding a computer, phone, and books or binders
Jack Kelley and Douglas Engelbart testing Herman Miller’s custom Action Office setup at Stanford Research Institute. / THF610616

After observing and responding to the needs of the team, Kelley recommended a range of customized Action Office items, which appeared onstage with Engelbart at the Joint Computer Conference. One of the items that Kelley designed was the console chair from which Engelbart gave his lecture. He ingeniously paired an off-the-shelf Shell Chair designed by Charles and Ray Eames with a molded tray attachment to support the mouse and keyboard. This one-of-a-kind chair featured prominently in The Mother of All Demos.

Office cubicle with chair in front of computer with large boxy monitor
An unobstructed view of Jack Kelley’s customization of an Eames Shell Chair with removable, swinging tray for the NLS. The chording keyboard is visible at left, and the prototype mouse is at right. / THF610615

During the consultation, Kelley also noticed that Engelbart’s mouse prototype had difficulty tracking on hard surfaces. He created a “friendly” surface solution by simply lining the right side of the console tray with a piece of Naugahyde. If Engelbart was seen to be controlling the world’s first mouse onstage in 1968, Kelley contributed one very hidden “first” in story of computing history too: the world’s first mousepad. Sadly, the one-of-a-kind chair disappeared over time, but luckily, we have many images documenting its design within The Henry Ford’s archival collections.

Photo pasted onto black three-ring binder sheet depicting a person in front of a keyboard with a monitor to the side and copystand in front of them
A closer view of the world’s first mousepad – the beige square of Naugahyde inset into the NLS tray at bottom right. / THF610645

The computer scientist Mark Weiser said, “the most profound technologies are the ones that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” If this is true, the impact of Engelbart’s 1968 demonstration—supported by Kelley’s console chair and mousepad—are hidden pieces of the computing history. So as design shaped the computer, the computer also shaped design.


Kristen Gallerneaux is Curator of Communications & Information Technology at The Henry Ford.

Herman Miller, design, by Kristen Gallerneaux, computers, technology

In the early 1930s, tensions were running high between two competing news sources: newspaper publishers were feeling the strength of their monopoly slipping away as the public’s appreciation for radio news broadcasts grew. This time of conflict in communications history is known as “The Press-Radio War.”

Publishers felt especially threatened by the nimbleness of radio networks. Broadcasters could share breaking news immediately over the airwaves, rather than having to wait for the next day’s run of newspapers to be printed and distributed. At first, newspaper companies tried to boycott radio’s ability to grow into something more than just an entertainment medium by asking wire services to block the flow of newsworthy information to radio stations. But eventually, the two media formats settled into a truce by the late 1930s, partly owing to the demand for reliable information-sharing as the threat of World War II grew. 

Aircraft flying over towers and buildings
The Detroit News “autogiro” aircraft flies over the WWJ transmitter towers on the roof of the Detroit News building. The autogiro used a swiveling camera to take aerial photos of newsworthy events and quickly transported reporters to the sites of developing stories. / THF238502

Some newspapers saw the financial benefit in blending formats and went so far as to cut out the competition by starting their own radio news stations. The Detroit News was one of the first newspapers in the United States to incorporate a commercial radio station into its operations. In August 1920, WWJ (then owned by the Detroit News) launched its program of nightly broadcasts under the call sign 8MK. As of 2020, WWJ has been on-air for 100 years!

Aircraft flying over tall buildings
In this image, the Detroit News autogiro flies over downtown Detroit. The Penobscot Building—site for the News’s experimental W8XWJ station—appears in the foreground. The original vertical “whip” antenna is just visible on the ball that tops the metal tower. / THF239963

In 1936, the Detroit News launched experimental audio broadcasting station W8XWJ from the 47th floor of the Penobscot Building in downtown Detroit. W8XWJ was formed under the FCC’s ultra-high short-wave “Apex” station program, an experiment designed to provide listeners with higher quality AM signals. The station’s original 100-watt AM vertical “whip” antenna was attached to the beacon sphere that tops the metal tower perched on the roof of the Penobscot Building. The height of the Penobscot—the tallest skyscraper in the city at that point—helped to disperse the radio waves over the entire city. Many people are familiar with the glowing red beacon at the top of the Penobscot, but its connection to the growth of radio in the city is not as well known.

From 1938-1940, W8XWJ ran a fascinating but ultimately short-lived experiment with an emerging technology called “radio facsimile.” Customers would hook a special “radio printer” up to their own radio, which would print the news overnight while they slept. In the morning, the news would be ready to enjoy with morning coffee – no need to deliver a physical newspaper!

Piece of equipment next to image of woman
One of the original Finch Facsimile Transmitters from W8XWJ, complete with original station badge visible and a sample of a radio fax. / THF160295

At W8XWJ, a Finch Facsimile Transmitter was used to convert images and text into audio tones. These signals would arrive in customer’s home via radio waves, where their “radio printer” would translate the tones into human language. Everything would print out onto continuous rolls of thermal paper.

Wooden box with machinery inside, paper strip with images of three faces, paper reels
A Crosley “Reado” Radio Printer. / THF160315

This is a Crosley Reado Radio Printer – the type of device that people would connect to their home radio and would receive their faxed newspapers on. When The Henry Ford conserved this artifact through an Institute for Museum and Library Services grant, our conservators were excited to find an example of a facsimile still on the drum inside the machine. In this image, you can see an original radio facsimile portrait of Boris Karloff, who was famous for his 1931 portrayal of Frankenstein’s monster.

The Henry Ford’s collections also include the original transmitter and amplifier that powered the W8XWJ station.

GIF showing two metal cabinets with dials, one open to show mechanism inside
W8XWJ’s Western Electric 500 Watt Ultra Shortwave Transmitter and Amplifier. These two devices are visible in their original installation here. / THF173159, THF173165

The idea behind W8XWJ’s radio facsimile experiment was revolutionary, but the process was slow and fussy. It could take over 20 minutes to print a single page of news, and signal reception became unreliable beyond a mile or two away from the transmitter. In 1940, W8XWJ ended its radio facsimile project.

While the original “whip” antenna for W8XWJ was replaced by a FM antenna in the early 1940s, if you look toward the top of the Penobscot building today, there is a tangle of communication equipment visible from street level. And in the interesting way that the new and the old can merge and converge within the histories of technology, some of this contemporary equipment fulfills radio facsimile’s promise to provide easily accessible information—the top of the Penobscot now serves as an important hub for Detroit’s wireless Internet network.


Kristen Gallerneaux is Curator of Communications & Information Technology at The Henry Ford.

newspapers, radio, printing, Michigan, Detroit, communication, by Kristen Gallerneaux, #THFCuratorChat

linc-1
A LINC console built by Jerry Cox at the Central Institute for the Deaf, 1964.

There are many opinions about which device should be awarded the title of "the first personal computer." Contenders range from the well-known to the relatively obscure: the Kenbak-1 (1971), Micral N (1973), Xerox Alto (1973), Altair 8800 (1974), Apple 1 (1976), and a few other rarities that failed to reach market saturation. The "Laboratory INstrument Computer" (aka the LINC) is also counted among this group of "firsts." Two original examples of the main console for the LINC are now part of The Henry Ford's collection of computing history.

The LINC is an early transistorized computer designed for use in medical and scientific laboratories, created in the early-1960s at the MIT Lincoln Laboratory by Wesley A. Clark with Charles Molnar. It was one of the first machines that made it possible for individual researchers to sit in front of a computer in their own lab with a keyboard and screen in front of them. Researchers could directly program and receive instant visual feedback without the need to deal with punch cards or massive timeshare systems.

These features of the LINC certainly make a case for its illustrious position in the annals of personal computing history. For a computer to be considered "personal," the device must have had a keyboard, monitor, data storage, and ports for peripherals. The computer had to be a stand-alone device, and above all, it had to be intended for use by individuals, rather than the large "timeshare" systems often found in universities and large corporations.

linc-2
The inside of a LINC console, showing a network of hand-wired and assembled components.

Prototyping
In 1961, Clark disappeared from the Lincoln Lab for three weeks and returned with a LINC prototype to show his managers. His ideal vision for the machine was centered on user friendliness. Clark wanted his machine to cost less than $25,000, which was the threshold a typical lab director could spend without needing higher approval. Unfortunately, Clark’s budget goal wasn’t reached—when commercially released in 1964, each full unit cost $43,000 dollars.

The first twelve LINCs were assembled in the summer of 1963 and placed in biomedical research labs across the country as part of a National Institute of Health-sponsored evaluation program. The future owners of the machines—known as the LINC Evaluation Program—travelled to MIT to take part in a one-month intensive training workshop where they would learn to build and maintain the computer themselves.

Once home, the flagship group of scientists, biologists, and medical researchers used this new technology to do things like interpret real-time data from EEG tests, measure nervous system signals and blood flow in the brain, and to collect date from acoustic tests. Experiments with early medical chatbots and medical analysis also happened on the LINC.

In 1964, a computer scientist named Jerry Cox arranged for the core LINC team to move from MIT to his newly formed Biomedical Computing Laboratory at Washington University at St. Louis. The two devices in The Henry Ford's recent acquisition were built in 1963 by Cox himself while he was working at the Central Institute for the Deaf. Cox was part of the original LINC Evaluation Board and received the "spare parts" leftover from the summer workshop directly from Wesley Clark.

linc-3
Mary Allen Wilkes and her LINC "home computer." In addition to the main console, the LINC’s modular options included dual tape drives, an expanded register display, and an oscilloscope interface. Image courtesy of Rex B. Wilkes.

Mary Allen Wilkes
Mary Allen Wilkes made important contributions to the operating system for the LINC. After graduating from Wellesley College in 1960, Wilkes showed up at MIT to inquire about jobs and walked away with a position as a computer programmer. She translated her interest in “symbolic logic” philosophy into computer-based logic. Wilkes was assigned to the LINC project during its prototype phase and created the computer's Assembly Program. This allowed people to do things like create computer-aided medical analyses and design medical chatbots.  In 1964, when the LINC project moved from MIT to the Washington University in St. Louis, rather than relocate, Wilkes chose to finish her programming on a LINC that she took home to her parent’s living room in Baltimore. Technically, you could say Wilkes was one of the first people in the world to have a personal computer in her own home.

linc-4
Wesley Clark (left) and Bob Arnzen (right) with the "TOWTMTEWP" computer, circa 1972.

Wesley Clark
Wesley Clark's contributions to the history of computing began much earlier, in 1952, when he launched his career at the MIT Lincoln Laboratory. There, he worked as part of the Project Whirlwind team—the first real time digital computer, created as a flight simulator for the US Navy. At the Lincoln Lab, he also helped create the first fully transistorized computer, the TX-0, and was chief architect for the TX-2.

Throughout his career, Clark demonstrated an interest in helping to advance the interface capabilities between human and machine, while also dabbling in early artificial intelligence. In 2017, The Henry Ford acquired another one of Clark's inventions called "The Only Working Turing Machine There Ever Was Probably" (aka the "TOWTMTEWP")—a delightfully quirky machine that was meant to demonstrate basic computing theory for Clark's students.

Whether it was the “actual first” or not, it is undeniable that the LINC represents a philosophical shift as one of the world’s first “user friendly” interactive minicomputers with consolidated interfaces that took up a small footprint. Addressing the “first” argument, Clark once said: "What excited us was not just the idea of a personal computer. It was the promise of a new departure from what everyone else seemed to think computers were all about."

Kristen Gallerneaux is Curator of Communication & Information Technology at The Henry Ford.

computers, women's history, technology, by Kristen Gallerneaux, #THFCuratorChat

kristen-1
An image from the set of
The Henry Ford’s Innovation Nation.

For many people—especially those who grew up between the decades of the 1970s through the 1990s—the sight of a boombox often prompts the thought: “I wonder how heavy that thing would feel, if I carried it around on my shoulder?” Boomboxes are infused with the promise of human interaction, ready for active use—to be slung from arm to arm, hoisted up on a shoulder, or planted with purpose on a park bench or an empty slice of asphalt in a city somewhere.

Here at The Henry Ford, we recently acquired a trio of classic boomboxes to document stories about the growth of mobile media and the social communication of music in American culture.

The Norelco 22RL962 was developed in the mid-1960s by the Dutch company, Philips. A combination radio and compact cassette player, it had recording and playback functions as well as a carrying handle. While it was generally thought of as the first device that could be accurately called a “boombox,” the Norelco failed to gain mass traction. The core issue wasn’t due to poor performance from a technological standpoint, but rather the bad sound quality of the tapes. In 1965, the American engineer Ray Dolby invented the Dolby Noise Reduction system, which led to clean, hiss-free sound on compact cassette tapes. His invention sparked a revolution in hi-fi cassette audio.

kristen-2
The ubiquitous compact cassette tape.

In the early 1970s, Japanese manufacturers began to make advancements in boombox technology as an outgrowth of modular hi-fi stereo components. Living spaces in Japan were typically small, and there was a desire to condense electronics into compact devices without losing sound quality.

Later that decade, the improved boombox made its way to the United States, where it was embraced by hip hop, punk, and new wave musicians and fans—many of whom lived in large cities like New York and Los Angeles. In many ways, the boombox was a protest device, as youth culture used them to broadcast politically charged music in public spaces.

kristen-3
An early image of the Brooklyn Bridge and New York Skyline. THF113708

Boomboxes literally changed the sonic fabric of cities, but this effect was divisive. By the mid-1980s, noise pollution laws began to restrict their use in public. The golden years of the boombox were also short lived due to the rising popularity and affordability of personal portable sound devices like the Sony Walkman (and later, the MP3 player), which turned music into a private, insular experience.

kristen-4
The JVC RC-550 ”El Diablo” boombox. THF179795

JVC RC-550 “El Diablo”

This boombox was built for the street, and it is meant to be played loud. Its design is rugged, with a carrying handle and protective “roll bars” in case it is dropped. Many classic photos from the early years of hip-hop depict fans and musicians carrying the El Diablo around cities and on the subway in New York.

The JVC RC-550 is a member of what sound historians refer to as the “holy trinity” of innovative boomboxes. While the origins of its “El Diablo” nickname are uncertain, it is believed to stem from the impressive volume of sound it can transmit—or its flashing red sound meters. It is a monophonic boombox, meaning that it has one main speaker and it is incapable of reproducing sound in stereo. A massive offset 10-inch woofer dominates its design, coupled with smaller midrange and tweeter speakers. As with most boomboxes of this time, bass and treble levels could be adjusted.

An input for an external microphone led to the RC-550 being advertised as a mobile personal amplifier system. Brochures from the Japanese version show the boombox being used by salesmen to amplify their pitches in front of crowds, as a sound system in a bar, and by a singing woman accompanied by a guitarist. Recording could take place directly through the tape deck, or through the microphone on top, which could be rotated 360-degrees.

kristen-5
JVC 838 Biophonic Boombox. THF177384

JVC 838 Biphonic Boombox
The JVC 838 is important for its transitional design. It was one of the first boomboxes to incorporate the symmetrical arrangement of components that would become standard in 1980s portable stereos: visually balanced speakers, buttons and knobs, and a centered cassette deck.

As boombox designs evolved, they began to include (almost to the point of parody) sound visualization components such as VU meters and other electronic indicators. In many cases, these were purely for visual effect rather than function. The needle VU meters on the JVC 838 however, were accurate.

A unique feature of the JVC 838 boombox is its “BiPhonic” sound—a spatial stereo feature that creates a “being there” effect through its binaural speaker technology, resulting in “three-dimensional depth, spaciousness, and pinpoint imaging.” The box also includes an “expand” effect to widen the sound even further.

kristen-6
Sharp GF-777 “Searcher.” THF177382

Sharp “Searcher” GF-777
The Sharp “Searcher” GF-777 is an exercise in excess. Often referred to as the “king of the boomboxes,” it was also one of the largest ever produced. Weighing thirty pounds (minus ten D-cell batteries) and measuring over one foot tall and two feet wide, it took a certain amount of lifestyle commitment to carry this device around a city.

The Searcher played a key part in the performance and representation of hip-hop music. Its six speakers include four woofers individually tuned for optimal bass transmission and amplitude. It appeared in a photograph on the back cover of the first Run-DMC album, found its way into several music videos, and was photographed alongside breakdancing crews. 

Many people used this boombox as an affordable personal recording studio. Two high quality tape decks opened the possibility for people to create “pause tapes” – a way of creating looped beats through queuing, recording, rewinding, and repeating a short phrase of music. A microphone input and an onboard echo effect meant people could rap or sing over top of music backing tracks.

Much like Thomas Edison’s phonograph, the boombox came full circle, allowing people to record and play back music for public and communal consumption. And while they may not mesh with our ideas of what a “mobile” device is in our age of smartphones and streaming services, their reach permeated popular culture in the 1970s well into the 1990s. Sometimes acting as portable sound systems, sometimes used as affordable personal recording studios—carrying a boombox through the streets (wherever you happened to live) was as much a fashion statement and lifestyle choice as it was a celebration of music and social technology.

Kristen Gallerneaux is Curator of Communications and Information Technology at The Henry Ford.

portability, technology, communication, music, radio, by Kristen Gallerneaux, popular culture