Past Forward

Activating The Henry Ford Archive of Innovation

Posts Tagged computers

Looking out the window at snowy Michigan probably had any Ford Motor Company engineer, researcher, or scientist thinking that developing and researching space systems, air cushioned vehicles, and computer components in sunny Newport Beach, California, was the way to go.

Aeronutronic Systems, Inc. was formed as a subsidiary of Ford in 1956 under the leadership of G.J. Lynch. The group was originally organized to develop and manufacture products for military purposes in the fields of Complete Weapons Systems, Aeronautics, Electronics, Computers, and Nucleonics and Physics. By 1959, the group was a made a division of Ford and had expanded into research and development beyond military purposes.

Low, modern glass and concrete building with patio, columns, and pool outside, pictured at dusk
Lobby, computer products building. / THF627413

The division was headquartered in Newport Beach, California. Brochures for the division flaunted its cutting-edge research facilities, testing laboratories, research library, and proximity to deep-sea fishing, sailing, skiing, and the fact that the temperature rarely dropped below 44 or rose above 75.

Page with text and aerial map drawing
Aeronutronic campus map. / THF627410

The groups within the division worked on a variety of projects. The Space Systems group completed projects including the Blue Scout vehicle, which tested equipment in space; a lunar capsule, designed to land on the moon with scientific testing equipment to gather data on the lunar environment; and a design for a space station.

Black-and-white photo of four women with large, round component with wiring; also contains text
Group of women who worked on the Blue Scout project. / THF627401

Satellite or other spacecraft among the stars with a planet in the background
Artist's rendering of lunar capsule built by Ford Motor Company Aeronutronic Division, 1960. / THF141214

Space stations/vehicles, including one capsule-shaped with "breakaway" to show interior with rooms and person, one smaller and triangular, and one top-shaped with tubing around it
Space station concept drawing. / THF627416

In Weapons Systems, they worked on several missile projects, including the Shillelagh Guided Missile for the Army Missile Command, and ARTOC (Army Tactical Operations Central), which was a mobile command post for the Army Signal Corp.

Silhouette of person holding pointer to topographic map with pink, blue, and white projected notations on it
ARTOC command board. / THF627406, detail

The Electronics and Computers division worked on BIAX computer components, as well as MIND (Magnetic Integration Neuron Duplication), an electronic neuron that duplicated the function of live nerve cells, among other things.

Metal panels covered in complex, multicolored wiring
Computer elements. / THF627414

Research projects included surface tension tests; developing thin films solid state components; manufacturing the FLIDEN Flight Data Entry Unit, which was used as part of the FAA air traffic control system; and developing an air cushioned vehicle.

Black-and-white photo of woman working at boxy console with keyboard; also contains text
FLIDEN unit, demonstrated by Ellen Arthur. / THF627397

Two men in suits sit at a table, looking at a model of a truck-like vehicle with white fringe below body
Air-cushioned vehicle concept. / THF627420

The employees at the Aeronutronic division had fun too, with an employee newsletter to keep them up to date on company happenings as well as their many recreation leagues, which included bowling, basketball, and baseball among other sports, as well as chess and bridge clubs.

Man in bowling shirt and shoes and black pants rolls a bowling ball toward the camera; also contains text caption
Fred Ju, team captain, bowling in the Men’s Bowling League. / THF627399

Black-and-white photo of four people sitting around a table playing cards; other similar tables of people visible in background
Members of the Bridge Club / THF627395

Aeronutronic continued to change with the times. In 1962, it became a division of the Ford subsidiary Philco, and in 1976 became Ford Aerospace and Communication Corporation, before being sold by Ford in 1990.


Kathy Makas is Reference Archivist at The Henry Ford. This post is based on a December 2021 presentation of History Outside the Box on The Henry Ford’s Instagram channel. Follow us there for new presentations on the first Friday of each month.

space, technology, computers, Ford workers, Ford Motor Company, History Outside the Box, archives, by Kathy Makas

The Henry Ford’s curatorial team works on many, many tasks over the course of a year, but perhaps nothing is as important as the task of building The Henry Ford’s collections. Whether it’s a gift or a purchase, each new acquisition adds something unique. What follows is just a small sampling of recent collecting work undertaken by our curators in 2021 (and a couple in 2020), which they shared during a #THFCuratorChat session on Twitter.

In preparation for an upcoming episode of The Henry Ford's Innovation Nation, Curator of Domestic Life Jeanine Head Miller made several new acquisitions related to board games. A colorful “Welcome to Gameland” catalog advertises the range of board games offered by Milton Bradley Company in 1964, and joins the 1892 Milton Bradley catalog—dedicated to educational “School Aids and Kindergarten Material”—already in our collection.

Yellow page with text and image of family walking through "doors" made of two giant board game boxes turned on end
Milton Bradley Company Catalog, “Welcome to Gameland,” 1964. / THF626388

Page with elaborate text and illustration of children, one holding a number toy or board
Milton Bradley Company Trade Catalog, “Bradley’s School Aids and Kindergarten Material,” 1892. / THF616712

We also acquired several more board games for the collection, including “The Game of Life”—a 1960 creation to celebrate Milton Bradley’s centennial anniversary that paid homage to their 1860 “The Checkered Game of Life” and featured an innovative, three-dimensional board with an integrated spinner. “The Game of Life,” as well as other board games in our collection, can be found in our Digital Collections.

GIF that cycles through images of several board games: Life, Candy Land, Clue, and Settlers of Catan
Board games recently acquired for use in The Henry Ford’s Innovation Nation. / THF188740, THF188741, THF188743, THF188750

This year, Katherine White, Associate Curator, Digital Content, was thrilled to unearth more of the story of designer Peggy Ann Mack. Peggy Ann Mack is often noted for completing the "delineation" (or illustration) for two early 1940s Herman Miller pamphlets featuring her husband Gilbert Rohde's furniture line. After Rohde's death in 1944, Mack took over his office. One commission she received was to design interiors and radio cases for Templetone Radio. The Henry Ford recently acquired this 1945 radio that she designed.

Rectangular brown radio with two knobs and tan-colored fabric on front
Radio designed by Peggy Ann Mack, 1945. / Photo courtesy Rachel Yerke

Peggy Ann Mack wrote and illustrated the book Making Built-In Furniture, published in 1950, which The Henry Ford also acquired this year. The book is filled with her illustrations and evidences her deep knowledge of the furniture and design industries.

Book cover in rose and mauve with text and image of tools and book
Making Built-In Furniture, 1950. / Photo courtesy Katherine White

Mack (like many early female designers) has never received her due credit. While headway has been made this year, further research and acquisitions will continue to illuminate her story and insert her name back into design history.

Katherine White also worked this year to further expand our collection of Herman Miller posters created for Herman Miller’s annual employee picnic. The first picnic poster was created by Steve Frykholm in 1970—his first assignment as the company’s internal graphic designer. Frykholm would go on to design 20 of these posters, 18 of which were acquired by The Henry Ford in 1988; this year, we finally acquired the two needed to complete the series.

Graphic poster with stylized lollipops with text on sticks and at top of poster
Herman Miller Summer Picnic Poster, “Lollipop,” 1988. / THF626898

White poster with text at top and stylized peach wedges at bottom
Herman Miller Summer Picnic Poster, “Peach Sundae,” 1989. / THF189131

After Steve Frykholm, Kathy Stanton—a graduate of the University of Cincinnati’s graphic design program—took over the creation of the picnic posters, creating ten from 1990–2000. While The Henry Ford had one of these posters, this year we again completed a set by acquiring the other nine.

GIF that cycles slowly through a number of graphic posters
Recently acquired posters created by Kathy Stanton for Herman Miller picnics, 19902000 / THF626913, THF626915, THF626917, THF626921, THF189132, THF189133, THF189134, THF626929, THF626931

Along with the picnic posters, The Henry Ford also acquired a series of posters for Herman Miller’s Christmas party; these posters were created from 1976–1979 by Linda Powell, who worked under Steve Frykholm at Herman Miller for 15 years. All of these posters—for the picnics and the Christmas parties—were gifted to us by Herman Miller, and you can check them out in our Digital Collections.

GIF cycling through a number of graphic posters with text and a few images
Posters designed by Linda Powell for Herman Miller Christmas parties, 19761979 / THF626900, THF189135, THF189137, THF189136, THF189138, THF626909, THF626905

Thanks to the work of Curator of Communications and Information Technology Kristen Gallerneaux, in early 2021, a very exciting acquisition arrived at The Henry Ford: the Lillian F. Schwartz and Laurens R. Schwartz Collection. Lillian Schwartz is a groundbreaking and award-winning multimedia artist known for her experiments in film and video.

Lillian Schwartz was a long-term “resident advisor” at Bell Laboratories in New Jersey. There, she gained access to powerful computers and opportunities for collaboration with scientists and researchers (like Leon Harmon). Schwartz’s first film, Pixillation (1970), was commissioned by Bell Labs. It weaves together the aesthetics of coded textures with organic, hand-painted animation. The soundtrack was composed by Gershon Kingsley on a Moog synthesizer.

Thick red text reading "PIXILLATION" over black background with blue digital pattern
“Pixillation, 1970 / THF611033

Complementary to Lillian Schwartz’s legacy in experimental motion graphics is a large collection of two-dimensional and three-dimensional materials. Many of her drawings and prints reference the creative possibilities and expressive limitations of computer screen pixels.

Framed artwork filled with colorful abstract shapes
“Abstract #8” by Lillian F. Schwartz, 1969 / THF188551

With this acquisition, we also received a selection of equipment used by Lillian Schwartz to create her artwork. The equipment spans from analog film editing devices into digital era devices—including one of the last home computers she used to create video and still images.

Storage shelves filled with electronic equipment
Editing equipment used by Lillian Schwartz. / Image courtesy Kristen Gallerneaux

Altogether, the Schwartz collection includes over 5,000 objects documenting her expansive and inquisitive mindset: films, videos, prints, paintings, sculptures, posters, and personal papers. You can find more of Lillian Schwartz’s work by checking out recently digitized pieces here, and dig deeper into her story here.

Katherine White and Kristen Gallerneaux worked together this year to acquire several key examples of LGBTQ+ graphic design and material culture. The collection, which is currently being digitized, includes:

Illustrations by Howard Cruse, an underground comix artist…

Cartoon-like line drawing of three people, one in a wheelchair, most holding signs
Illustration created by Howard Cruse. / Photo courtesy Kristen Gallerneaux

A flier from the High Tech Gays, a nonpartisan social club founded in Silicon Valley in 1983 to support LGBTQ+ people seeking fair treatment in the workplace, as LGBTQ+ people were often denied security clearance to work in military and tech industry positions...

Tri-fold page with text under plastic mounted on cardboard
High Tech Gays flier. / Photo courtesy Kristen Gallerneaux

An AIDSGATE poster, created by the Silence = Death Collective for a 1987 protest at the White House, designed to bring attention to President Ronald Reagan’s refusal to publicly acknowledge the AIDS crisis...

Acid yellow/lime green poster with image of Ronald Reagan's face and text
“AIDSGATE” Poster, 1987. / Photo courtesy Kristen Gallerneaux

A number of mid-1960s newspapers—typically distributed in gay bars—that rallied the LGBTQ+ community, shared information, and united people under the cause...

Page with text
“Citizens News.” / Photo courtesy Kristen Gallerneaux

A group of fliers created by the Mattachine Society in the wake of the 1969 Stonewall Uprising, which paints a portrait of the fraught months that followed...

Pink page with text
Flier created by the Mattachine Society. / Photo courtesy Kristen Gallerneaux

And a leather Muir cap of the type commonly worn by members of post–World War II biker clubs, which provided freedom and mobility for gay men when persecution and the threat of police raids were ever-present at established gay locales. Its many pins and buttons feature gay biker gang culture of the 1960s and early 1970s.

Black leather cap covered in buttons with images and text
Leather cap with pins. / Photo courtesy Kristen Gallerneaux

Another acquisition that further diversifies our collection is the “Nude is Not a Color” quilt, recently acquired by Curator of Domestic Life Jeanine Head Miller. This striking quilt was created in 2017 by a worldwide community of women who gathered virtually to take a stand against racial bias.

Brown quilt with text "NUDE IS NOT A COLOR" and quilted image of woman wearing dress with many short-sleeved shirts on it
“Nude is Not a Color” Quilt, Made by Hillary Goodwin, Rachael Door, and Contributors from around the World, 2017. / THF185986

Fashion and cosmetics companies have long used the term “nude” for products made in a pale beige—reflecting lighter skin tones and marginalizing people of color. After one fashion company repeatedly dismissed a customer’s concerns, a community of quilters used their talents and voices to produce a quilt to oppose this racial bias. Through Instagram, quilters were asked to create a shirt block in whatever color fabric they felt best represented their skin tone, or that of their loved ones.

Fabric panel featuring a number of short-sleeved shirts on a white background with brown around the edge
Shirt blocks on the “Nude is Not a Color” quilt. / THF185986, detail

Quilters responded from around the United States and around the world, including Canada, Brazil, the United Kingdom, Spain, the Netherlands, and Australia. These quilt makers made a difference, as via social media the quilt made more people aware of the company’s bias. They in turn lent their voices, demanding change—and the brand eventually altered the name of the garment collection.

Jeanine Head Miller has also expanded our quilt collection with the addition of over 100 crib quilts and doll quilts, carefully gathered by Paul Pilgrim and Gerald Roy over a period of forty years. These quilts greatly strengthen several categories of our quilt collection, represent a range of quilting traditions, and reflect fabric designs and usage—all while taking up less storage space than full-sized quilts.

GIF cycling through a variety of quilts
A few of the crib quilts acquired from Paul Pilgrim and Gerald Roy. / THF187113, THF187217, THF187075, THF187187, THF187251, THF187197

During 2021, Curator of Agriculture and the Environment Debra Reid has been developing a collection documenting the Civilian Conservation Corps, a New Deal program that employed around three million young men. This year, we acquired the Northlander newsletter (a publication of Fort Brady Civilian Conservation Corps District in Michigan), a sweetheart pillow from a camp working on range land regeneration in Oregon, and a pennant from a camp working in soil conservation in Minnesota’s Superior National Forest.

GIF cycling through newsletter front page, pillowcover with elk and fringe, and green and maroon pennant
Recent Civilian Conservation Corps acquisitions. / THF624987, THF188543, THF18854

We also acquired a partial Civilian Conservation Corps table service made by the Crooksville China Company in Ohio. This acquisition is another example of curatorial collaboration, this time between Debra Reid and Curator of Decorative Arts Charles Sable. These pieces, along with the other Civilian Conservation Corps material collected, will help tell less well-documented aspects of the Civilian Conservation Corps story.

White plate with blue edge and blue internal ring and text "C.C.C."
Civilian Conservation Corps Dinner Plate, 1933–1942. / THF189100

If you’ve been to Greenfield Village lately, you’ve probably noticed a new addition going in—the reconstructed Vegetable Building from Detroit’s Central Market. While we acquired the building from the City of Detroit in 2003, in 2021, Debra Reid has been working to acquire material to document its life prior to its arrival at The Henry Ford. As part of that work, we recently added photos to our collection that show it in service as a horse stable at Belle Isle, after its relocation there in 1894.

Page with black-and-white photograph of low open building among trees by dirt road; also contains text
“Seventy Glimpses of Detroit” souvenir book, circa 1900, page 20. While this book has been in our collections for nearly a century, it helps illustrate changes in the Vegetable Building structure over time. / THF139104

Black-and-white photograph of two-story building
Riding Stable at the Eastern End of Belle Isle, Detroit, Michigan, October 27, 1963. / THF626103

Elaborate two-story building with cars parked along street in front
Horse Stable on Belle Isle, Detroit, Michigan, July 27, 1978. / THF626107

This year, Debra Reid also secured a photo of Dorothy Nickerson, who worked with the Munsell Color Company from 1921 to 1926, and later as a Color Specialist at the United States Department of Agriculture. Research into this new acquisition—besides leading to new ideas for future collecting—brought new attention (and digitization) to a 1990 acquisition: A.H. Munsell’s second edition of A Color Notation.

Woman with bob wearing round glasses in front of a porch
Dorothy Nickerson of Boston Named United States Department of Agriculture Color Specialist, March 30, 1927. / THF626448

All of this is just a small part of the collecting that happens at The Henry Ford. Whether they expand on stories we already tell, or open the door to new possibilities, acquisitions like these play a major role in the institution’s work. We look forward to seeing what additions to our collection the future might have in store!


Compiled by Curatorial Assistant Rachel Yerke from tweets originally written by Associate Curators, Digital Content, Saige Jedele and Katherine White, and Curators Kristen Gallerneaux, Jeanine Head Miller, and Debra A. Reid for a curator chat on Twitter.

quilts, technology, computers, Herman Miller, posters, women's history, design, toys and games, #THFCuratorChat, by Debra A. Reid, by Jeanine Head Miller, by Kristen Gallerneaux, by Katherine White, by Saige Jedele, by Rachel Yerke, #Behind The Scenes @ The Henry Ford

Woman in red-checked shirt surrounded by monitors and other computer peripherals manipulates a joystick device while looking straight ahead
Lillian Schwartz working with a joystick interface at Bell Laboratories. Photo by Gerard Holzmann. / THF149836


In early 2021, The Henry Ford secured a very exciting donation: the Lillian F. Schwartz & Laurens R. Schwartz Collection. This material—which came to us through the generosity of the Schwartz family—spans from early childhood to late career and includes thousands of objects that document Lillian Schwartz’s expansive and inquisitive mindset: films and videos, two-dimensional artwork and sculptures, personal papers, computer hardware, and film editing equipment.

The late 1960s in California were a heady time in computing history. Massively influential technologies that are now part of our everyday lives were being invented or improved upon: home computers, the graphical user interface, the computer mouse, and ARPAnet. Meanwhile, on the opposite side of the country in New Jersey, the artist Lillian Schwartz was about to walk through the doors of revered technology incubator Bell Telephone Laboratories. Schwartz had recently met Bell Labs perceptual researcher Leon Harmon at the opening for the Museum of Modern Art’s group exhibition “The Machine at the End of the Mechanical Age.” Harmon and Schwartz each had work in the exhibit, and the pair struck up a conversation that led to an invitation for Lillian to visit the Labs.

Poster with text surrounded with gear-type teeth in gray and red
Black-and-white drawing of a man in black jacket and wide white bowtie
A poster for the Museum of Modern Art exhibit that led to Schwartz and Leon Harmon’s friendship (top) and a portrait of Harmon painted by Schwartz (bottom). /
THF18855THF188581

This fateful meeting led to Schwartz’s decades-long tenure as a “resident visitor” at Bell Labs, where she was exposed to powerful equipment like the IBM 7090 mainframe computer and Stromberg Carlson SC-4020 microfilm plotter. Allowing artists access to this high-end research and development facility upended conventions, creating an environment that was fruitful for cross-disciplinary collaboration between the sciences, humanities, and arts. From 1968 until the early 2000s, Schwartz paid regular visits to the Labs, where she developed groundbreaking computer films and videos, and an impressive array of multimedia artworks.

Continue Reading

women's history, making, technology, computers, The Henry Ford Magazine, by Kristen Gallerneaux, art

Piece of machinery
Automatic Pinion Cutter, Used by the Waltham Watch Company, circa 1892 / THF110250


The roles women play in manufacturing are occasionally highlighted, but are often hidden—opposing states that these two stories from our collections demonstrate.

The Waltham Watch Company in Massachusetts was a world-famous example of a highly mechanized manufacturer of quality consumer goods. Specialized labor, new machines, and interchangeable parts combined to produce the company's low-cost, high-grade watches. Waltham mechanics first invented machines to cut pinions (small gears used in watch movements) in the 1860s; the improved version above, on exhibit in Made in America in Henry Ford Museum of American Innovation, was developed in the 1890s.

Page with text and five illustrations of a factory and factory workers
This article, “The American Watch Works,” from the July-December 1884 issue of Scientific American, discussed the women workers of the Waltham Watch Company. / THF286663

In the late 19th century, reports on the world-renowned company featured women workers. An 1884 Scientific American article specifically called out women’s work. The article explained that, “For certain kinds of work female operatives are preferred, on account of their greater delicacy and rapidity of manipulation.” Recognizing that gendered experiences—activities that required manual dexterity, such as sewing, or the exacting work of textile production—had prepared women for a range of delicate watchmaking operations, the Waltham company hired them to drill, punch, polish, and finish small watch parts, often using machines like the pinion cutter above. The company publicized equal pay and benefits for all its employees, but women workers were still segregated in many factory facilities and treated differently in the surrounding community.

Square of woven material in frame; also contains text label underneath
Burroughs B5000 Core Memory Plane, 1961. / THF170197

The same reasoning that guided women’s work at Waltham in the 19th century led 20th-century manufacturers to call on women to produce an early form of computer memory called core memory. Workers skillfully strung tiny rings of magnetic material on a wire grid under the lens of a microscope to create planes of core memory, like the one shown above from the Burroughs Corporation. (You can learn more about core memory weaving here, and more about the Burroughs Corporation here.) These woven planes would be stacked together in a grid structure to form the main memory of a computer.

However, unlike the women of Waltham, the stories of most core memory weavers—and other women like them in the manufacturing world—are still waiting to be told.


This post was adapted from a stop on our forthcoming “Hidden Stories of Manufacturing” tour of Henry Ford Museum of American Innovation in the THF Connect app, written by Saige Jedele, Associate Curator, Digital Content, at The Henry Ford. To learn more about or download the THF Connect app, click here.

THF Connect app, women's history, technology, manufacturing, Made in America, Henry Ford Museum, computers, by Saige Jedele

On August 12, 1981, as members of the press gathered in the Waldorf-Astoria ballroom in New York City, one of the largest technology companies in the world was about to make an announcement. At the time, the name “IBM” was mostly associated with the room-sized installations of mainframe computers that the company had become famous for in the 1950s. They cost millions of dollars to purchase, needed their own air-conditioned rooms, and required specially trained staff. They were found in large corporations, universities, and research facilities—but not in a typical home. That was about to change with the introduction of the IBM Model 5150, also known as the IBM PC.

Horizontal computer processor with two disk drives, monitor, and keyboard
An IBM 5150 PC, circa 1984. / THF156040

The idea of internally producing a small, affordable computer was at odds with IBM’s corporate culture. One naysayer remarked that “IBM bringing out a personal computer would be like teaching an elephant to tap dance." Nonetheless, a development team was formed, and the lofty goal of completing the project in one short year was established. “Project Chess” began its race toward the finish line. The team of twelve was fronted by Don Estridge and Mark Dean, who designed the ISA bus (an interface allowing easy expansion of memory and peripherals) and color graphics system.

Part of the success story of designing the 5150 in such a short span of time is an exception to a long-standing IBM company rule: the engineers were allowed to include technology made by outside companies, rather than building every aspect of the PC, from the ground up, themselves. This is why the IBM PC uses an Intel 8088 microprocessor, can run on Microsoft DOS, and is compatible with software made by other companies. It was also released under an open architecture model—a philosophy that would soon lead to a flood of PC-inspired “clones.”

Computer (which looks like a large typewriter) and cassette tape player
An Atari 800 computer: an early attempt by a video game company to harness the home computing market. / THF155976

In truth, the IBM PC was not the first small home computer, and by entering this market, the company would face competition from Commodore, Atari, Tandy, and Apple—all of whom had produced successful microcomputers beginning in the mid-1970s. To match the wide reach of these rivals, IBM sold their machines at convenient retailers like Sears and ComputerLand. Importantly, it was affordable by 1981 standards at an introductory price of $1,565. And… it fit on your desktop.

A positive effect of IBM creating a PC is that it helped to legitimize the notion of home computers beyond specialists and the home hobbyist crowd. IBM was essentially a well-recognized “heritage brand” by 1981, so the type of consumers reluctant to invest in a computer produced by a scrappy start-up were suddenly scrambling to put deposits down for a 5150. Whereas as “young” computing companies (many of which started out as video game companies) were under threat of being swallowed up in a competitive market, IBM projected an aura of measured reliability and was trusted to stick around.

White button with silhouette image of Charlie Chaplin sitting in a chair that appears to be falling backwards at a table that holds a computer and vase of flowers; also contains text
A button advertising the IBM PC. / THF323543

Ironically, while IBM’s plan was to break out of the office and into the home, PCs were purchased in bulk by businesses to populate desks and cubicles. A visual unity was established in office environment—fields of putty gray and beige personal computers.

The IBM 5150 arrived at an important “boom” moment in computing history. It is evidence of an established company challenging its established design modes by harnessing emerging technologies. And IBM’s decision to pivot proved to be a timely decision too, since affordable microprocessors began to render behemoth, expensive mainframes largely obsolete. But most importantly, the IBM PC—and the wave of computers like it that followed—were designed with the non-specialist in mind, helping to make the personal computer an everyday device in people’s homes.


Kristen Gallerneaux is Curator of Communications and Information Technology at The Henry Ford.

home life, technology, computers, by Kristen Gallerneaux

Large piece of beige metal equipment with round yellow screen (?) at one end and buttons and switches

THF154728

The growth of commercial aviation in the United States presented a challenge—how could airports control aircraft within the increasingly crowded space around them? The earliest efforts at air traffic control were limited to ground crew personnel waving flags or flares to direct planes through takeoffs and landings. Needless to say, this system needed improvement.

The first air traffic control tower opened in 1930 at Cleveland Municipal Airport. Pilots radioed their positions to the tower, where controllers noted the information on a map showing the positions of all planes within the airport's vicinity. Controllers radioed the pilots if a collision seemed possible and gave them permission to land or take off. Soon, all large American airports employed towers operated by the airports' respective municipal governments and staffed by growing crews. Smaller airports, though, remained dependent on a single controller (who might also handle everything from the telephone switchboard to passenger luggage). Additionally, some pilots treated controllers' instructions as mere suggestions—the pilots would land when and where they pleased.

Two planes and several people in open field near low building
Before air traffic controllers began communicating with pilots by radio, airports relied on ground crew personnel to direct planes through takeoffs and landings. / detail of THF94919

Airlines recognized the need for formal oversight and attempted to supply it themselves. They formed Air Traffic Control, Inc., in 1936 to regulate traffic at larger airports. This new agency worked well but applied only to commercial aircraft. It became clear that only federal supervision could regulate all commercial and private air traffic at the nation's airports. The Civil Aeronautics Act, passed by Congress in 1938, established the Civil Aeronautics Authority—the forerunner of today's Federal Aviation Administration (FAA)—to establish safety guidelines, investigate accidents, regulate airline economics, and control air traffic.

The post-World War II economic boom brought a surge in air travel, as well as larger and faster jet aircraft. But the nation's air traffic control system remained unchanged. Upgrades came only after a tragic mid-air collision between two passenger planes over the Grand Canyon in 1956. All 128 passengers and crew aboard both flights perished. Public outrage forced the widespread implementation of radar, a technology greatly improved during the war, into the management of U.S. skies.

Into the 1960s, air traffic controllers augmented radar signal displays with hand-written plastic markers that identified each plane and its altitude. Integrating computers with radar eliminated the need for written markers, as information about each plane automatically displayed on radar screens. This improved radar system, referred to as the Automated Radar Terminal System, finally made its way to metropolitan airports in 1969, when the FAA contracted with Sperry Rand to build control computers and radar scopes.

Large piece of beige metal equipment with round yellow screen (?) at one end and buttons and switches; open panels on top and sides showing complex wiring
This computer-integrated radar scope, used at Detroit Metro Airport from 1970 to 2001, was one of the first units capable of displaying an airplane's identification number and altitude directly on the screen. In this photograph, panels have been removed to reveal the unit’s internal components. / THF154729

This radar scope display panel is the first of those scopes to be produced. It was installed at Detroit Metropolitan Airport in 1970. This unit, and others like it, sat in the tower's radar room. It was used to monitor and control aircraft within 35 miles of the airport. Two people worked the unit in tandem, sitting on either side of the display screen. While this arrangement made maximum use of expensive equipment, it led to inevitable difficulties—users sometimes disagreed on screen contrast settings. With the introduction of single-user LCD displays in the 1980s and 1990s, this unit was downgraded to training use and then retired from service in 2001.

Today, radar itself is facing retirement from air traffic control. Aircraft can relay their positions to each other and the ground without radar through Automatic Dependent Surveillance-Broadcast, which combines GPS technology with high-speed data transfer. Required in most controlled airspace as of January 1, 2020, this new system provides more accurate location information. It also allows closer spacing of aircraft in the skies, increasing capacity and permitting better traffic management.

Though it was outpaced by newer technologies, this computer-integrated radar scope—the first of its kind—survives in the collections of The Henry Ford as evidence of the critical developments that produced the safe and efficient aviation system we rely on today. To discover more aviation stories, visit the Heroes of the Sky exhibition in Henry Ford Museum of American Innovation, or find more on our blog.


Matt Anderson is Curator of Transportation at The Henry Ford.

computers, technology, Michigan, flying, Detroit, by Matt Anderson, airplanes

We all know that 2020 was quite the year—there was a worldwide pandemic, protests across the United States, and a contentious presidential election. It’s understandable that during the year, we all had a lot on our minds.

That said, we shared more than 160 new posts on our blog during 2020. Most of these were eagerly found and devoured by our readers. But a few really great stories from our collections might have gotten lost in the shuffle—and we wanted to make sure you didn’t miss them. Here are ten of those hidden gems to help you start off 2021 right.

Happy New Year!

Explore Art and Design


Bowl in two shades of blue depicting a champagne bottle and ship, among other decorative elements
Jazz Bowl, circa 1931 / THF88364

The Jazz Bowl: Emblem of a City, Icon of an Age. Discover how a 24-year-old ceramic artist, Viktor Schreckengost, designed a bowl that both captured the essence of New York City in the early 20th century and became an icon of America’s “Jazz Age.”

Mid-century modern plywood chair
Molded Plywood Lounge Chair, 1942-1962 / THF16299

Charles and Ray Eames: Masters of Collaboration. Learn how husband-and-wife design duo Charles and Ray Eames collaborated on an early plywood leg splint, the iconic chairs they are known for, and on Mathematica, now in Henry Ford Museum!

Dive into Computers—and Computing


Photo of woman sitting among a variety of office equipment, with text and line drawings of equipment to the right side
Burroughs E8000, circa 1965 / THF298298

“Wherever There’s Business There’s Burroughs.” In this post from the William Davidson Initiative for Entrepreneurship, explore the history of the Burroughs Corporation and their entrepreneurial journey from perfecting mathematical calculating machines, through work on wartime bomb sights, to the early computer market.

Blue console with many buttons and switches
A LINC console built by Jerry Cox at the Central Institute for the Deaf, 1964.

New Acquisition: LINC Computer Console. The LINC computer may not be as familiar to you as the Apple 1, but it is in contention for the much-debated title of “the first personal computer.” Learn more about its history and the people involved in its creation.

Immerse Yourself in Pop Culture


Gold bracelet with six charms of dogs attached
Lady and the Tramp Charm Bracelet, circa 1955 / THF8604

Lady and the Tramp Celebrates 65 Years. Take a new look at an old classic—Disney’s 1955 movie Lady and the Tramp. Learn how it came to be and share in some personal memories from one of our curators.

Comic book featuring Wonder Woman lassoing two other figures, under clear plastic in a mat
Display for Sensation Comics #82

Comic Book Preservation: Tips from Our Conservators. Go behind-the-scenes in our conservation lab to learn how we take care of the comic books in our collections—and how you can take care of your own.

Examine Radio Innovations


Black rectangle with text and several dials and knobs; two batteries next to it
Pocket Radio, circa 1925 / THF156309

A “Pocket-Sized” Possibility for the Future. Our idea of what constitutes “portable” has changed over time. Learn how the “pocket radio” allowed people to take their music with them during the 1920s.

Wooden box with machinery visible inside; two rolls in foreground of picture and strip with images of several faces on left side of image
Crosley Reado Radio Printer, 1938-1940 / THF160315

Experiments with Radio Facsimile at W8XWJ. Learn about the “Press-Radio War” of the 1930s, and a revolutionary, but ultimately short-lived, experiment by Detroit News radio station W8XWJ to deliver print-at-home news.

Uncover the Stories Behind Fashion Fabrics


Page with handwritten text on left side and textile sample swatches on right side
Washington Anderton's Textile Samples Notebook, Cocheco Mfg. Co., 1876-1877 / THF670787

"Sampling" the Past: Fabrics from America's Textile Mills. Learn what textile sample books are, and take a visual tour through example pages from the extensive collection of sample books The Henry Ford received from the American Textile History Museum in 2017.

Purple glass bottle sitting next to box with images and text
Wells, Richardson & Company "Leamon's Genuine Aniline Dyes: Purple," 1873-1880 / THF170208

A More Colorful World. Discover how a chemistry student, seeking to create a synthetic cure for malaria, inadvertently created the first synthetic dye, aniline purple—and then created more, transforming the world’s access to color.


Ellice Engdahl is Digital Collections & Content Manager at The Henry Ford.

COVID 19 impact, radio, popular culture, fashion, computers, design, by Ellice Engdahl

Empty auditorium with rows of seats and stage with curtains, a large screen with a piece of equipment projected on it, and several people on the stage

The auditorium at the 1968 Fall Joint Computer Conference before guests arrive. / THF610598

The setting is sparse. The downward sweep of theatre curtains, a man seated stage left, backed by a hinged office cubicle wall. Technology in this image is scarce, and yet it defines the moment. A video camera is perched on top of the wall, its electronic eye turned downwards to surveil a man named Douglas Engelbart, seated in a modified Herman Miller Eames Shell Chair below. A large projection screen shows a molded tray table holding a keyboard at its center, a chunky-looking computer mouse made of wood on the right side, and a “chording keyboard” on the left. Today, we take the computer mouse for granted, but in this moment, it was a prototype for the future.

The empty auditorium chairs in this image will soon be filled with attendees of a computer conference. It is easy to imagine the collective groan of theater seating as this soon-to-arrive audience leans a little closer, to understand a little better. With the click of a shutter from the back of the room, this moment was collapsed down into the camera lens of a young Herman Miller designer named Jack Kelley. He knew this moment was worth documenting because if the computer mouse under Douglas Engelbart’s right hand onstage was soon going to create “the click that was heard around the world,” this scene was the rehearsal for that moment.

Three-ring binder black-colored page with a photo of entrance doors and a marquee with text; two people in front of doors
Entrance to the 1968 Fall Joint Computer Conference, San Francisco Civic Auditorium. / THF610636

“The Mother of All Demos”

On December 9, 1968, Douglas Engelbart of the Stanford Research Institute (SRI) hosted a session at the Joint Computer Conference at the Civic Center Auditorium in San Francisco. The system presented—known as the oNLine System (or NLS)—was focused on user-friendly interaction and digital collaboration.

Man sitting in chair with attached console, with video cameras pointed at him; another man to side
Douglas Engelbart demonstrates the oNLine System. / THF146594

In a span of 90 minutes, Engelbart (wearing a headset like the radar technician he once was) used the first mouse to sweep through a demonstration that became the blueprint for modern computing. For the first time, computing processes we take for granted today were presented as an integrated system: easy navigation using a mouse, “WYSIWYG” word processing, resizable windows, linkable hypertext, graphics, collaborative software, videoconferencing, and presentation software similar to PowerPoint. Over time, the event gained the honorific “The Mother of all Demos.” When Engelbart was finished with his demonstration, everyone in the audience gave him a standing ovation.

Fixing the Human-Hardware Gap

In 1957, Engelbart established the Augmentation Research Center (ARC) at SRI to study the relationship between humans and machines. It was here, in 1963, that work on the first computer mouse began. The mouse was conceptualized by Engelbart and realized from an engineering standpoint by Bill English. All the while, work on NLS was percolating in the background.

Page from three-ring binder containing photo of man sits in chair with attached console with feet up on a nearby table that also holds what appears to be a large monitor; office furniture around him
Douglas Engelbart kicks back with the NLS at the Stanford Research Institute (SRI). / THF610612

While Engelbart was gearing up to present the NLS, Herman Miller Research Corporation’s (HRMC’s) president and lead designer Robert Propst was updating the “Action Office” furniture system. Designed to optimize human performance and workplace collaboration, Action Office caught Engelbart’s attention. He was excited by its flexibility and decided to consult with Herman Miller to provide the ideal environment for people using the NLS. Propst sent a young HMRC designer named Jack Kelley to California so he could study the needs of the SRI group in person.

Two men, one seated and one standing, among office furniture holding a computer, phone, and books or binders
Jack Kelley and Douglas Engelbart testing Herman Miller’s custom Action Office setup at Stanford Research Institute. / THF610616

After observing and responding to the needs of the team, Kelley recommended a range of customized Action Office items, which appeared onstage with Engelbart at the Joint Computer Conference. One of the items that Kelley designed was the console chair from which Engelbart gave his lecture. He ingeniously paired an off-the-shelf Shell Chair designed by Charles and Ray Eames with a molded tray attachment to support the mouse and keyboard. This one-of-a-kind chair featured prominently in The Mother of All Demos.

Office cubicle with chair in front of computer with large boxy monitor
An unobstructed view of Jack Kelley’s customization of an Eames Shell Chair with removable, swinging tray for the NLS. The chording keyboard is visible at left, and the prototype mouse is at right. / THF610615

During the consultation, Kelley also noticed that Engelbart’s mouse prototype had difficulty tracking on hard surfaces. He created a “friendly” surface solution by simply lining the right side of the console tray with a piece of Naugahyde. If Engelbart was seen to be controlling the world’s first mouse onstage in 1968, Kelley contributed one very hidden “first” in story of computing history too: the world’s first mousepad. Sadly, the one-of-a-kind chair disappeared over time, but luckily, we have many images documenting its design within The Henry Ford’s archival collections.

Photo pasted onto black three-ring binder sheet depicting a person in front of a keyboard with a monitor to the side and copystand in front of them
A closer view of the world’s first mousepad – the beige square of Naugahyde inset into the NLS tray at bottom right. / THF610645

The computer scientist Mark Weiser said, “the most profound technologies are the ones that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” If this is true, the impact of Engelbart’s 1968 demonstration—supported by Kelley’s console chair and mousepad—are hidden pieces of the computing history. So as design shaped the computer, the computer also shaped design.


Kristen Gallerneaux is Curator of Communications & Information Technology at The Henry Ford.

Herman Miller, design, by Kristen Gallerneaux, computers, technology

Throughout its history, the Burroughs Corporation adhered to the founding principles of William S. Burroughs – to respond to the human problems of the times with relevant technologies. As part of the William Davidson Foundation Initiative for Entrepreneurship, we had the opportunity to delve into the Burroughs Corporation Collection, which consists of machinery, photographs, publications, and marketing materials for the business equipment that Burroughs manufactured.

thf299109
Patent Drawing Image for Burroughs’ Calculating Machine, awarded August 21, 1888. THF299109

William Seward Burroughs – grandfather to the Beat Generation author sharing the same name – was a banker from Auburn, New York. He was also an inventor with an aptitude for mechanical design. Burroughs suffered from tuberculosis and moved his family to St. Louis, Missouri, in 1882 on the suggestion of his doctor, who thought the warmer climate would be better for his health. While there, Burroughs rented bench space from a local machine-shop owner, Joseph Boyer, and began designs on a machine that could ease the work of figuring and re-figuring mathematical calculation by hand – work that proved tedious for bankers and shopkeepers alike. In 1886, with a working machine complete, Burroughs formed the American Arithmometer Company with co-founders Thomas Metcalfe, RM Scruggs, and William R. Pye, to produce and market his machine.

thf299012
American Arithmometer Company in St. Louis, MO, circa 1904 THF299012

The company’s first device was a simple addition and subtraction machine. Unfortunately, the machines didn’t work as well as planned. It was quickly discovered that accurate calculations required a specific amount of pressure to be applied to the handle. This was an unforeseen mechanical flaw that produced inaccurate calculations and caused bankers to lose faith in the machine, nearly causing the fledgling company’s failure. Burroughs was incredibly disappointed. In fact, he was in the process of quite literally throwing the machines out the window of his second-story workroom when he had the idea to use a dash-pot. A dash-pot is a mechanical device which resists motion – for instance, preventing heavy doors from slamming. This provided a uniform motion for the handle regardless of the force exerted upon it, regulating the mechanism.

thf172030
American Arithmometer Company “Bankers and Merchants Registering Accountant,” Adding Machine, circa 1890 THF172030

thf299361
Advertisement for the Burroughs Registering Accountant, 1901 THF299361

With the handle problem solved, bankers renewed their trust in the machines and bought them with enthusiasm. In the first decade, the company grew in staff and sales, increasing their product line to four models by 1898. Unfortunately, William S. Burroughs died the same year, but his company was left in good hands. Under President Joseph Boyer, the company experienced significant growth. By 1904, the company had outgrown its St. Louis facility, moving operations to Detroit, Michigan, where a 70,000-square foot factory was built. In 1905, the company was renamed the Burroughs Adding Machine Company as a tribute to its late founder.

thf299107
Burroughs Adding Machine Advertisement from 1915 THF299107

In the 1920s, the company continued to expand its operations, establishing worldwide sales in 60 countries and production in South America, Europe, Africa, and Australia. In the mid-1930s, recognizing the potential for additional advanced equipment, the company’s product line diversified to include over 450 models of manual and electric calculation devices, bookkeeping machines, and typewriters. 

thf289007
Page from Burroughs Annual Report Showing Burroughs’ United States and Foreign Plants in 1950 THF289007

thf288406
Burroughs Corporation Plant in Plymouth, Michigan, 1950-1965. The building was designed by Albert Kahn in 1938 THF288406

During World War II, Burroughs’ production was halted as the company collaborated with the National Defense Program to enter into military and war contracts. Its most influential contribution to the war effort was the development of the Norden bombsight in 1942. According to the Burroughs’ “History” booklet, this apparatus made “accurate, high-altitude bombing possible, and was considered by some military authorities as the single most significant device in shortening the war.” This same bombsight was used on the Enola Gay to accurately drop the atomic bomb “Little Boy” on Hiroshima, Japan, in 1945.

Burroughs’ work throughout the war launched the company onto a different trajectory once military production was no longer required. Wartime needs had accelerated computer and electronics research, becoming a significant part of the company’s focus in the 1950s, along with defense, space research, banking, and business technology. In 1952, Burroughs built the core memory system for the ENIAC – the world’s first electronic general-purpose computer.

The 1950s were a time for diversification for Burroughs as the company acquired many other entities in order to expand its product capabilities. In 1953, to reflect its increasingly diverse product and service offerings, the company was renamed the Burroughs Corporation, and was recognized as a single outlet for a variety of business management products. One of the most significant acquisitions came in 1956, when Burroughs acquired ElectroData Corporation of Pasadena, California. This allowed Burroughs to further expand into the electronic computing market and led to the development of the B5000 series in 1961, which was celebrated as a groundbreaking scientific and business computer.

thf299362
Advertisement for the ElectroData E101 Machine, Part of the ElectroData Division of Burroughs Corporation THF299362

thf299360
dvertisement, “Breakthroughput,” for the Burroughs B5500 Information Processing System, 1964 THF299360

Successful collaboration during wartime prompted Burroughs Corporation to be awarded additional government and defense contracts throughout the 1960s. The company provided electronic computing solutions in the Navy’s POLARIS program, the Air Force’s SAGE, ALRI, ATLAS, and BUIC air defense networks, and the NORAD combat computing and data display system. According to the Burroughs’ “History” booklet, during the Cold War Burroughs computers were being “used to make split-second evaluations of threats to the North American continent using input from satellites and radar throughout the world.”

thf170242
Burroughs “AN/FST-2 Identification Friend or Foe/Selective Identification Feature (IFF/SIF),” for the SAGE Air Defense Radar System, 1960    THF170242

Burroughs also produced a transistorized guidance computer in 1957, which was used in the launch of Atlas intercontinental ballistic missiles (ICBMs) – this same system was deployed in the 1960s to launch Mercury and Gemini space flights.

thf299110
Project Mercury Guidance Computer, 1959-1963. Project Mercury was the first space program dedicated to achieving human spaceflight. THF299110

By the 1970s, Burroughs had emerged as a major player in the computer industry, but was still in the shadow of powerhouses like IBM. To further its influence and market potential, the company began thinking about office automation and information management in a holistic way, providing all scales of computers from mini- and micro-computers to networks and large modular systems – along with the software and peripherals (printers, communications systems, displays, and keyboards) to complement them.

thf298298
Pages from the booklet, “Burroughs E8000,” circa 1965. The Burroughs E8000 management system provided a versatile accounting system for electronic data processing. THF298298

Throughout the early 1980s, additional acquisitions were achieved in order to fill technology voids and strengthen areas targeted for future growth. The company also developed joint ventures to strengthen business relationships. Despite this growth, IBM continued to dominate the market as the unrivaled leader of the computer industry. Hoping to challenge IBM, Burroughs embarked on a substantial entrepreneurial undertaking with Sperry Corporation in 1986. Combining the market positions, talent, and resources of both corporations, the merger was meant to signal a new era of competition. What resulted was one of the largest mergers ever to occur in the computer industry, and the creation of the new entity in information technology, Unisys.

thf298315
Unisys Equipment, 1986-1996  THF298315

From the adding machine to office equipment to computers that helped to send people into space, the Burroughs Corporation was steadfast in its pursuit of the latest research and in its development of cutting-edge technology. To view additional items we’ve already digitized from our Burroughs Corporation Collection, check out our Digital Collections page!  

Samantha Johnson is Project Curator for the William Davidson Foundation Initiative for Entrepreneurship at The Henry Ford. Special thanks to Kristen Gallerneaux, Curator of Communications & Information Technology, for sharing her knowledge and resources to assist in the writing of this post.

technology, entrepreneurship, computers, by Samantha Johnson

linc-1
A LINC console built by Jerry Cox at the Central Institute for the Deaf, 1964.

There are many opinions about which device should be awarded the title of "the first personal computer." Contenders range from the well-known to the relatively obscure: the Kenbak-1 (1971), Micral N (1973), Xerox Alto (1973), Altair 8800 (1974), Apple 1 (1976), and a few other rarities that failed to reach market saturation. The "Laboratory INstrument Computer" (aka the LINC) is also counted among this group of "firsts." Two original examples of the main console for the LINC are now part of The Henry Ford's collection of computing history.

The LINC is an early transistorized computer designed for use in medical and scientific laboratories, created in the early-1960s at the MIT Lincoln Laboratory by Wesley A. Clark with Charles Molnar. It was one of the first machines that made it possible for individual researchers to sit in front of a computer in their own lab with a keyboard and screen in front of them. Researchers could directly program and receive instant visual feedback without the need to deal with punch cards or massive timeshare systems.

These features of the LINC certainly make a case for its illustrious position in the annals of personal computing history. For a computer to be considered "personal," the device must have had a keyboard, monitor, data storage, and ports for peripherals. The computer had to be a stand-alone device, and above all, it had to be intended for use by individuals, rather than the large "timeshare" systems often found in universities and large corporations.

linc-2
The inside of a LINC console, showing a network of hand-wired and assembled components.

Prototyping
In 1961, Clark disappeared from the Lincoln Lab for three weeks and returned with a LINC prototype to show his managers. His ideal vision for the machine was centered on user friendliness. Clark wanted his machine to cost less than $25,000, which was the threshold a typical lab director could spend without needing higher approval. Unfortunately, Clark’s budget goal wasn’t reached—when commercially released in 1964, each full unit cost $43,000 dollars.

The first twelve LINCs were assembled in the summer of 1963 and placed in biomedical research labs across the country as part of a National Institute of Health-sponsored evaluation program. The future owners of the machines—known as the LINC Evaluation Program—travelled to MIT to take part in a one-month intensive training workshop where they would learn to build and maintain the computer themselves.

Once home, the flagship group of scientists, biologists, and medical researchers used this new technology to do things like interpret real-time data from EEG tests, measure nervous system signals and blood flow in the brain, and to collect date from acoustic tests. Experiments with early medical chatbots and medical analysis also happened on the LINC.

In 1964, a computer scientist named Jerry Cox arranged for the core LINC team to move from MIT to his newly formed Biomedical Computing Laboratory at Washington University at St. Louis. The two devices in The Henry Ford's recent acquisition were built in 1963 by Cox himself while he was working at the Central Institute for the Deaf. Cox was part of the original LINC Evaluation Board and received the "spare parts" leftover from the summer workshop directly from Wesley Clark.

linc-3
Mary Allen Wilkes and her LINC "home computer." In addition to the main console, the LINC’s modular options included dual tape drives, an expanded register display, and an oscilloscope interface. Image courtesy of Rex B. Wilkes.

Mary Allen Wilkes
Mary Allen Wilkes made important contributions to the operating system for the LINC. After graduating from Wellesley College in 1960, Wilkes showed up at MIT to inquire about jobs and walked away with a position as a computer programmer. She translated her interest in “symbolic logic” philosophy into computer-based logic. Wilkes was assigned to the LINC project during its prototype phase and created the computer's Assembly Program. This allowed people to do things like create computer-aided medical analyses and design medical chatbots.  In 1964, when the LINC project moved from MIT to the Washington University in St. Louis, rather than relocate, Wilkes chose to finish her programming on a LINC that she took home to her parent’s living room in Baltimore. Technically, you could say Wilkes was one of the first people in the world to have a personal computer in her own home.

linc-4
Wesley Clark (left) and Bob Arnzen (right) with the "TOWTMTEWP" computer, circa 1972.

Wesley Clark
Wesley Clark's contributions to the history of computing began much earlier, in 1952, when he launched his career at the MIT Lincoln Laboratory. There, he worked as part of the Project Whirlwind team—the first real time digital computer, created as a flight simulator for the US Navy. At the Lincoln Lab, he also helped create the first fully transistorized computer, the TX-0, and was chief architect for the TX-2.

Throughout his career, Clark demonstrated an interest in helping to advance the interface capabilities between human and machine, while also dabbling in early artificial intelligence. In 2017, The Henry Ford acquired another one of Clark's inventions called "The Only Working Turing Machine There Ever Was Probably" (aka the "TOWTMTEWP")—a delightfully quirky machine that was meant to demonstrate basic computing theory for Clark's students.

Whether it was the “actual first” or not, it is undeniable that the LINC represents a philosophical shift as one of the world’s first “user friendly” interactive minicomputers with consolidated interfaces that took up a small footprint. Addressing the “first” argument, Clark once said: "What excited us was not just the idea of a personal computer. It was the promise of a new departure from what everyone else seemed to think computers were all about."

Kristen Gallerneaux is Curator of Communication & Information Technology at The Henry Ford.

computers, women's history, technology, by Kristen Gallerneaux, #THFCuratorChat