Past Forward

Activating The Henry Ford Archive of Innovation

“Donation - Crash Test Dog” isn’t the type of subject line you typically see on an email. Yet just after Thanksgiving in 2019, that’s exactly what landed in the Benson Ford Research Center’s email queue. Sleepypod, makers of safety-conscious pet carriers and other related pet products, wanted to know if The Henry Ford would be interested in the donation of MAX2, one of the early crash test dogs they had designed to simulate a live pet in a series of crash tests used to demonstrate the increased safety of Sleepypod pet carriers. For the curator’s consideration, Sleepypod provided photos of MAX2, as well as a brief history of how and why he was developed.

Boxy leather or plastic dog figure, with text, logos, and shapes on sides
Sleepypod “MAX 2” Crash-Test Dog, 2012 / THF185385

The offer went off to Curator of Transportation Matt Anderson. Intrigued, Matt wanted to follow up on a few questions with the folks at Sleepypod. Of first concern: would Sleepypod be able to hold on to MAX2 until the new year? With just over a month left in 2019, there would be very little time to get MAX2 on site, develop a comprehensive write-up, present it to The Henry Ford’s Collections Committee for approval, and get a deed of gift sent off to—and returned by—Sleepypod. Thankfully, Sleepypod was happy to hold onto MAX2 for us.

Matt was also interested in knowing if the donation would include one of Sleepypod’s pet carriers, and if there was any associated press or marketing material they would be willing to include. Collecting these additional items would help us tell a more complete story about the company and their innovation. Sleepypod responded that not only would they be happy to offer MAX2 with a carrier and marketing material, they would also be interested in donating CLEO 1.0, their first crash test cat. Matt eagerly accepted their offer.

Champagne-colored fabric or plastic cat figure, with text and circular shape on side and camera where face would be
Sleepypod “CLEO” Crash-Test Cat, 2015 / THF185386

In January 2020, MAX2 and CLEO made it to their new home at The Henry Ford, by way of arrival at our relatively new Main Storage Building (MSB). In previous years, objects would arrive at the curatorial offices in the Benson Ford Research Center, where they would be deposited in a small holding room until formally approved and accessioned; they would then be taken elsewhere for storage. MSB, however, is equipped with two rooms dedicated to new acquisitions—one where objects can be examined by our conservation staff to make sure they do not pose a risk to other objects (via issues like insect infestations), and another where “clean” objects can be stored on compacting shelving until they are accessioned and assigned a permanent location, typically within the same building. Utilizing MSB in this way not only helps us keep better track of pending acquisitions, but also saves time and effort on behalf of our Collections Management team, as they have less distance to move objects after they have been accessioned.

Matt began prepping MAX2, CLEO, the carrier, and associated material for presentation to Collections Committee, the group responsible for approving all additions to the collections of The Henry Ford. In order to make his case for adding these crash pets to the collection—after all, “adorableness” is in the eye of the beholder, and not an adequate justification for acquisition—Matt pulled together information on Sleepypod’s history, the development of MAX2 and CLEO, and the historical significance of a pet carrier designed with safety in a moving car in mind (an advancement that shows the next evolution of transportation safety, now that human lives have benefited from crash test technology). All of this was distilled into a short write-up, intended to give the committee a broad overview of the potential acquisition and the rationale behind suggesting it.

Red fabric carrier with domed black mesh top; handle (?) laying nearby
Sleepypod Pet Carrier, 2019 / THF185389

Collections Committee—likely won over by a combination of Matt’s thorough and engaging write-up, and the surprise guest appearance of MAX2 and CLEO as meeting attendees—approved adding MAX2, CLEO, the Sleepypod carrier, and the associated marketing material to the collection. The group of items was assigned an accession number—2020.31, denoting that it was the 31st accession group brought into the collection in 2020—and the registrars assigned each of the 3D objects a number within that group: 2020.31.1 for the Sleepypod pet carrier, 2020.31.2 for MAX2, and 2020.31.3 for CLEO. The photography studio photographed MAX2, CLEO, and the carrier, so that the objects would be ready to go up on our Digital Collections page, which provides photos and information for over 100,000 items (and growing) in The Henry Ford’s collection.

After the Collections Committee meeting, there was one final step to officially transfer ownership of MAX2 and CLEO to The Henry Ford: completion of deed of gift paperwork. Generated by the Registrar office for all donations that become part of the collection, the deed of gift serves as a legal document that formally transfers ownership of an object to The Henry Ford. It also provides an opportunity for donors to indicate how they would like to be credited if the object is ever exhibited, published, or otherwise presented to the public. Once this paperwork is completed by a donor and returned to The Henry Ford, the acquisition process comes to an end.

Champagne-colored fabric or plastic cat figure, with text and circular shape on side and camera where face would be, lying on side
CLEO relaxing, waiting to be moved to her new home by her new owners / Photo courtesy Sophia Kloc

Although MAX2 and CLEO are certainly unique objects, the process by which they came to be part of The Henry Ford’s collection is the same one that every object must take. Although some acquisition offers (like the Sleepypod donation) result in a quick turnaround, others require more thought and research; while the process itself remains the same, the timeline is unique from object to object.

Without the wide variety of offers that The Henry Ford receives, our collection would not be what it is today. Sometimes the most interesting items we acquire are ones we would not have thought to look for, had someone not sought us out with an opportunity. Although we cannot accept everything—over 90 years of collecting means that many things are already represented in the collection, and other items just may not be a good fit for one reason or another—we always take the time to review the offers we are sent, never knowing when the next exciting acquisition may appear.

If you, too, are interested in providing an addition to the collections of The Henry Ford, information on how to start the process can be found here.


Rachel Yerke is Curatorial Assistant at The Henry Ford.

collections care, philanthropy, cars, by Rachel Yerke, #Behind The Scenes @ The Henry Ford

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at Hagerty tackle questions about trends in mobility and in car collecting—both today and tomorrow.

What aspect of mobility history (artifacts, topics, or themes) preserved at The Henry Ford feels the most significant in the current moment?

The Henry Ford’s amazing collection of self-propelled transportation machinery ranges from the diminutive 1896 Ford Quadricycle runabout that weighs just 500 pounds with an engine making four horsepower, to the Chesapeake & Ohio Railway’s gargantuan 1941 Allegheny steam locomotive weighing in at an unimaginable 1.2 million pounds and making 7,500 horsepower.

Of all these, however, the most powerful is an unassuming lime, white, and gold bus that powered the country out of its dark past of segregation into a future where laws would not discriminate against the nation’s citizens simply on the color of their skin. Especially when viewed through the prism of current events such as the Black Lives Matter movement, the 1948 General Motors (GM) bus where Rosa Parks made her stand against racial discrimination by sitting down is the most significant piece of mobility history in The Henry Ford’s collection.

Angled, aerial view of gold, green, and white bus in museum exhibit
The Rosa Parks Bus, on exhibit in With Liberty and Justice for All in Henry Ford Museum of American Innovation, is Hagerty’s pick for the most significant artifact from The Henry Ford’s collections in the current moment. / THF14922 

What cars are popular with collectors right now that might eventually make their way into museum collections?

Definitely include the Tesla Roadster as the start of an incredible story about Elon Musk. It’s also the first vehicle to make electrics cool. The McLaren P1 hybrid supercar was important for establishing electrification as a must-have feature in the supercar class, making every other supercar seem outdated. Any current Formula One car, as their complex hybrid powerplants are achieving formerly unheard-of efficiency rates of over 50 percent, which is the future of the internal combustion engine … assuming it has a future. The Chevy Bolt will be remembered as the turning point for General Motors’ reputation and the industry as a whole, transforming GM from the company that notoriously “killed the electric car” (the EV1) to one of the technology’s chief proponents. The same holds true for a Volkswagen diesel, circa 2010—an enormously influential moment in which the world’s largest automaker was forced by its own actions to pivot to fully embracing electric tech, thus spurring the industry as a whole to commit to electrification.

Back view of low black car parked in lot by building
One of Hagerty’s suggestions for cars that might make their way into museum collections is a Tesla Roadster—like this one, photographed in 2008 and owned by Elon Musk himself (photographed by Michelle Andonian). /  THF55832

Are there vehicle(s), innovator stories, or mobility technologies you think The Henry Ford should add to its collections right now? Why?

An early fuel-cell vehicle, either a Honda Clarity or Toyota Mirai or Hyundai Tucson FCEV, would represent how the industry has placed bets on various technologies—and how at that moment in time, it wasn’t clear which would win out (one could debate whether it is clear even now). Obviously, a Tesla Model S with autopilot tells the story of Silicon Valley’s attempt to disrupt the auto industry through fast-paced innovation common in big tech, but unknown in the historically cautious and slow-moving auto industry. A retired Waymo or GM Cruise taxi studded with LiDAR sensors would be an example of the first attempts to commercialize autonomous vehicles.

What mobility artifacts, innovator stories, or technologies do you think The Henry Ford will be collecting in 10 years? 50 years? 100 years?

Batteries are the new frontier, as are electric motors—and the relentless drive for efficiency in both. Nothing else defines this era so aptly. Also, semiconductor manufacturing. We have seen how beholden the industry is to a component that wasn’t even used in cars just a few decades ago. The cars of today and tomorrow are just the boxes that computers come in; every automaker is turning itself into a tech company whose primary competitive advantage will be in software.

Metal box with label with text on top and connection ports on back
By 1990, computer engine controls were nearly universal on American automobiles. This GM computer module controlled a gasoline engine's ignition firing sequence. Hagerty notes thatThe cars of today and tomorrow are just the boxes that computers come in.”  / THF109463

Aluminum construction is important, too. The 2015 Ford F-150, the first aluminum-body truck, is a watershed moment for aluminum in high-volume vehicles. It is an open question now whether aluminum will spread beyond that experiment, but no automaker has made such a high-stakes gamble as Ford with the F-150. New materials and manufacturing methods are coming as the battle to reduce weight continues into the electrification era.

What aspects of mobility is Hagerty paying the most attention to right now?

The act of getting behind the wheel, twisting the key, and hitting the road is an act of personal freedom, and we believe anyone and everyone who wants to experience that should be able to. Our longstanding Hagerty Driving Experience has put thousands of young people all over North America behind the wheels of classic cars, alongside passionate owners, to teach the basics of operating a manual transmission. Through the nonprofit Hagerty Drivers Foundation, we launched the “License to the Future” program, which provides financial assistance to kids ages 14–18 to cover the expense of driver’s training. And the Hagerty Driving Academy partners with Skip Barber Racing School at dozens of events around the country to teach safe, proficient driving skills in a variety of situations.

Man in raincoat and hat holds a paper by a car with decal with text on side; young man sticks head and elbow out driver side window
Ensuring young people have access to driver training is important. In this 1940 photo, a young man takes a driver’s test as part of the Ford Motor Company Good Drivers League at the New York World’s Fair. / THF216125 

We also regularly report on developments taking place in the realm of autonomous vehicles as a trusted voice to assure our members that this beloved activity that connects us—driving—is under no threat from the far-off future.

Will the future make owning classic vehicles more difficult or less difficult? Servicing older vehicles is already becoming harder, due to shortages in knowledge and parts, but will new technologies such as 3D printing or electric conversion mean that older vehicles will have new lives and relevance in the future?


Ellice Engdahl is Digital Collections & Content Manager at The Henry Ford. Aaron Robinson is Editor-at-Large, Kirk Seaman is Senior Editor, and Stefan Lombard is Executive Editor at Hagerty. Hagerty is an automotive enthusiast brand and the world's largest membership organization for car lovers everywhere. See Collecting Mobility for yourself in Henry Ford Museum of American Innovation from October 23, 2021, through January 2, 2022.

Additional Readings:

autonomous technology, education, manufacturing, alternative fuel vehicles, African American history, Rosa Parks bus, technology, cars, by Stefan Lombard, by Kirk Seaman, by Aaron Robinson, by Ellice Engdahl

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at General Motors (GM), donors of the General Motors first-generation self-driving test vehicle in the exhibit and contributors to our Driven to Win: Racing in America exhibit, tackle questions about autonomous vehicles (AVs), electric vehicles (EVs), and racing.

Our latest permanent exhibit, Driven to Win: Racing in America, is presented by General Motors. How has GM’s racing program evolved over time? 

GM’s Chevrolet and Cadillac brands have both had long, storied histories in motorsports. Racing is a fundamental part of what we do—from transferring technology learned on the track to help us build better vehicles to connecting with consumers through something they love.

Man with broom mustache in jacket and soft racing helmet, with goggles pushed up on forehead
Racing driver Louis Chevrolet co-founded GM’s Chevrolet brand with William C. Durant in 1911. / THF277330

Chevrolet has been successful in professional motorsports in the United States and around the globe, capturing many manufacturer, driver, and team championships in NASCAR, IndyCar, IMSA, and the NHRA. From stock cars to advanced prototypes, Cadillac Racing has a rich history—more than half a century—of racing around the world and around the clock on some of the world’s notably challenging circuits.

Off the track, our racing programs have evolved with the help of our GM facilities. In 2016, General Motors opened the doors to the all-new GM Powertrain Performance and Racing Center—a state-of-the-art facility designed to enhance the development processes for the company’s diverse racing engine programs.

In 2021, General Motors broke ground on the new Charlotte Technical Center, a 130,000-square-foot facility that will expand GM’s performance and racing capabilities. The facility is a $45 million investment for GM and it will be a strong hub for the racing and production engineering teams to collaborate, share resources, and learn together, delivering better results more quickly, both on the racetrack and in our production vehicles.

Two open-top race cars on a road or track with wooded hills in the background
The Chevrolet Corvette has a long, proud history in professional and amateur sports car racing. This pair of Corvettes is seen at a Sports Car Club of America race in Maryland in 1959. / THF135778

Engineering has become incredibly advanced over time, and leveraging tools between racing and production has become extremely important. We use tools like computational fluid dynamic models, which uses applied mathematics, physics, and computational software to visualize how a gas or liquid flows. These CFD models help us predict things like powertrain performance and aerodynamics.

Also, our Driver-in-the-Loop simulator allows us to test vehicles on courses virtually. It is the combination of two technologies: a real-time computer (with vehicle hardware) and a driving simulator. The driving simulator allows our development engineers to drive and test the real-time computer simulation and added hardware system on a virtual track, just like they would a physical prototype. The simulator was used extensively during the development of the mid-engine Corvette C8.R race car.

The 2001 C5-R Corvette is currently on loan from General Motors and can be seen by guests inside Driven to Win: Racing in America. Why was this vehicle selected to go on display inside Henry Ford Museum of American Innovation? 

The Corvette C5-R made its debut in 1999 at the Rolex 24 at Daytona and was a fixture of global GT racing for the next five years. From 1999–2004, Corvette Racing and the C5-R set the standard for racing success with 31 victories in the American Le Mans Series, along with an overall victory at the Rolex 24 in 2001.

During six years of competition, Corvette Racing—the first factory-backed Corvette team in the car’s history—led the C5.R to an overall victory at the Daytona 24-hour race and three 1-2 finishes in the GTS class at the 24 Hours of Le Mans. During the 2004 season, Corvette Racing won every race the team entered and captured every pole position in the American Le Mans Series.

Low yellow race car with text and logos
2001 C5-R Corvette, on loan from General Motors Heritage Center and currently on exhibit in Driven to Win: Racing in America in Henry Ford Museum of American Innovation. / THF185966

This specific car raced 17 times from August 2000 through June 2002 with 10 wins. It brought home the first win for the factory Corvette Racing program—Texas 2000 in the ALMS’ GTS class. Then it went on to become 2001 overall winner at Rolex 24, which was quite an accomplishment for a GT car. The car went on to win its class at Le Mans 24 in both 2001 and 2002. The modern era of Corvette’s factory racing program continues today, after over 20 years and 4 generations (C5/C6/C7/C8).

The success of this C5-R essentially started it all and we are proud to have it on display.

General Motors' donation of the 2016 GM First-Generation Self-Driving Test Vehicle was our first self-driving car acquisition. Why was it important to have this car join more than 300 others—including GM landmarks like the 1927 LaSalle and the 1997 EV1 Electric—in the collections of The Henry Ford? 

This vehicle represents a huge step forward on the journey to fully autonomous driving. With Cruise, our majority-owned subsidiary, we’re determined to commercialize safe, autonomous, and electric vehicles on our way to a driverless future—one with zero crashes.

Side view of compact white car with equipment on top and wires dangling down side
General Motors tested a series of autonomous vehicles in San Francisco, California, and Scottsdale, Arizona, in 2016. These cars used a combination of cameras, radar and lidar sensors, cellular and GPS antennas, and powerful computers to drive themselves on public streets in both cities. GM donated this one, now on exhibit in Driving America in Henry Ford Museum of American Innovation, to The Henry Ford in 2018. / THF173551

Cruise was the first AV company permitted to give rides to the public in its current driverless vehicles in the San Francisco area. Expansion of our real-world test fleet will help ensure that our self-driving vehicles meet the same strict standards for safety and quality that we build into all of our vehicles.

GM became the first company to assemble self-driving test vehicles in a mass-production facility when its next generation of self-driving Chevrolet Bolt EV test vehicles began rolling off of the line at Orion Township, Michigan, in January 2017.

The self-driving Chevrolet Bolt EVs feature an array of equipment, including LIDAR, cameras, sensors, and other hardware designed to accelerate development of a safe and reliable fully autonomous vehicle.

Reshaping cities and the lives of those who live in them has tremendous societal implications. Since we believe that all AVs will be EVs, these efforts will clearly advance our vision of zero crashes, zero emissions, and zero congestion, and help us build a more sustainable and accessible world.

This vehicle was really the first of its kind and its display is a sneak peek at the future of autonomy.

By 2025, General Motors plans to offer more than 30 electric vehicles globally. What does an all-electric future look like for Generation E? 

For electric vehicles to make an impact, we need consumers to embrace them in mass numbers. So earlier this year, General Motors introduced the world to EVerybody In.

This is our brand commitment toward advancing a world with zero crashes, zero emissions, and zero congestion. EVerybody In is more than a brand campaign, it's a global call to action for everybody to join us on the road to an all-electric future.

Front view of compact red car
GM introduced the EV1 in 1997. It was among the most sophisticated electric cars built during the 20th century. / THF91060

GM wants to put everyone in an EV. Thanks to Ultium, our EV architecture, GM is able to reimagine the vehicles it produces today as electric vehicles with equivalent power, excellent range, and a manufacturing cost different that is expected to diminish as EV production increases.

Not only will our EVs be fun to drive and cost less to own, they will also provide an outstanding customer experience. This is how we will encourage and inspire mass consumer adoption of EVs. GM has the technology, talent, scale, and manufacturing expertise to do it.

The all-electric future we are creating goes beyond our vehicles, it is inspiring us to do even more to help mitigate the effects of climate change. We plan to source 100 percent renewable energy to power our U.S. sites by 2025, and to become carbon neutral in our global vehicles and operations by 2040.

General Motors wants to impact society in a positive way and these are some of the steps we are taking to make it happen.

General Motors is committed to electrification—what types of current EV projects from the company might we expect to see in the museums of tomorrow?

With more than 30 EVs being introduced by 2025, we have a lot of exciting vehicles coming. From sedans, to trucks, to full-size SUVs, we will have a wide range of offerings in terms of size and design.

We are entering an inflection point in the transportation industry, a transformation the industry has not seen in decades—the mass adoption of electric vehicles. The first of any of these entries will be a sight to see in the museums of tomorrow for generations to come.


Lish Dorset is Marketing Manager, Non-Admission Products, at The Henry Ford. Todd Christensen is Strategy and Operations Manager, Chevrolet Motorsports Marketing & Activation, and Gina Peera is Corporate Strategy and Executive Communications at General Motors. General Motors is a global automotive manufacturer, driving the world forward with the goal to deliver world-class customer experiences at every touchpoint and doing so on a foundation of trust and transparency. See Collecting Mobility for yourself in Henry Ford Museum of American Innovation from October 23, 2021, through January 2, 2022.

Additional Readings:

engineering, manufacturing, Henry Ford Museum, Driving America, Chevrolet, alternative fuel vehicles, technology, autonomous technology, Driven to Win, race cars, racing, cars, by Gina Peera, by Todd Christensen, by Lish Dorset

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at the Michigan Department of Transportation (MDOT) and the Michigan Economic Development Corporation (MEDC) tackle questions about the infrastructure of mobility.

Our cars are increasingly "connected," whether for navigation, communication, or entertainment. What challenges does this pose for our current infrastructure, and what improvements are most urgently needed to keep pace with technology?

MDOT:

First, the balance between data-sharing and privacy. The Michigan Department of Transportation leads all our efforts with safety first. Our agency looks to find opportunities to solve modern traffic challenges as cars become increasingly connected with technology that meets the need for navigation, communication, and/or entertainment.

Due to today’s connectivity, MDOT has the means to share data and asset information relevant to roadway users—for example, wrong-way driving alerts and information directly connected to infrastructure, vehicles, and other devices. But as more consumers purchase connected vehicles, there are increased opportunities for exploitation by hackers using cellular networks and/or wi-fi. Therefore, software vulnerabilities, privacy, and other cybersecurity concerns must be addressed as quickly as the technology progresses.

Small electronic device, cord, instruction manual, "quick reference guide," and box for GPS system
Early standalone consumer GPS units, like this 1998 Garmin “Personal Navigator” system, had limited or no integration with the rest of a car. As vehicles become increasingly connected, potential safety and security concerns increase too. / THF150113

Second, leaving room for solutions, opportunities, and collaboration. It is imperative to remain technology-agnostic and interoperability is critical. Today’s vehicles meet many needs and should be able to work with many devices and operating systems.

A recent decision by the Federal Communications Commission (FCC) to reallocate a portion of the radio spectrum from public safety to commercial use has been the most significant impact to date. This introduces the potential of not having enough spectrum to operate the technology to improve safety and mobility. Continued collaboration with other governmental agencies, private companies, and academia leads to a safer, better user experience for motorists.

Yellow record cover with text and image of front of large truck
Challenges in allocating limited radio spectrum frequencies aren’t new. In 1977, at the height of the CB radio craze, the FCC yielded to popular demand by expanding the number of citizens band channels from 23 to 40. / THF106547

MEDC:

The increase in connectivity between vehicles challenges our current infrastructure because infrastructure upgrades are not able to happen as quickly as the vehicle technology is advancing. First, we need to make sure our current infrastructure is maintained and suitable for the vehicles we do have on the roads. The next improvements would be continuing to implement vehicle-to-everything (V2X) technology on our roadways, and to explore connected infrastructure projects, such as a public-private partnership to establish and manage a connected roadway corridor.

Navigation apps like Waze leverage user data and intelligent transportation systems (ITS) to provide real-time updates, helping drivers avoid construction and other traffic congestion. Does MDOT have its own advanced technologies and services to enhance these platforms and keep Michigan drivers safe and on the move?

MDOT:

MDOT utilizes a variety of methods to reach out to our citizens to provide traveler information. Drivers can access our Mi-Drive link for detailed information regarding construction projects, etc. Our traffic operations centers post information for incidents and rerouting on our dynamic message signs located on our freeway system.

Square-shaped narrow white plastic box with text "wazebeacon"
This 2018 Waze beacon, on display in Collecting Mobility through January 22, 2022, eliminated dead spots in GPS navigation by placing battery-powered beacons in tunnels where GPS satellite signals couldn't reach. / THF188371

As vehicles and roadways transition to the future state of connectivity, there will continue to be many vehicles on the road that are not equipped with these technologies. How will the new systems accommodate older or non-connected vehicles?

MDOT:

MDOT works with industry partners on that transition, and as new technologies are implemented, we are always considering the users and amount of saturation for vehicles to take advantage of them. For example, MDOT provides information on our dynamic message boards, and we can also provide that information into connected vehicles. It would be difficult to remove those dynamic message signs currently, as the number of connected vehicles on the road today is not high enough. The technologies will become more prevalent as drivers get new vehicles and aftermarket technologies are implemented on older vehicles. Systems already exist on vehicles coming off the assembly line that are improving safety, such as blind spot and forward collision warnings, and adaptive cruise control.

Car in distance on dirt road between fields; a horse-drawn carriage is pulled over on one side
The coming transitional period, in which connected cars share roads with non-connected vehicles, will mirror the mobility transition of the early 20th century, when horse-drawn vehicles coexisted with automobiles. / THF200129

MEDC:

It’s important to note that connected roadways will not cancel out the use of non-connected vehicles—there will be a transitional period where a lot of non-connected vehicles will use aftermarket Internet of Things (IoT) solutions that allow them to take advantage of the connected roadways. The non-connected vehicles may not be able to take advantage of all the benefits of the connected roadways, like communication and navigation, but there will be solutions to upgrade their vehicles to accommodate them.

We've long depended on gasoline taxes to finance road construction and maintenance. But as the percentage of electric vehicles (EVs) grows, gas tax revenues decrease. Should we be looking at new funding methods? What alternatives should we consider?

MDOT:

This will be an important public policy discussion going forward. In Michigan, road funding legislation signed by then-Governor Rick Snyder in 2015 included increased registration fees for EVs. Roads in Michigan are primarily funded through registration fees and fuel taxes. More creative mechanisms will be necessary to continue to maintain our roads and bridges. Legislation in Michigan tasked MDOT with conducting a statewide tolling study, which is ongoing. New public-private partnerships will be vital to creating and maintaining charging infrastructure. 

Small white wooden building with sign on side, shaded by a tree
Gas taxes won’t pay for roads in an electric-vehicle world. This modern problem could be solved in part with an ancient solution: toll roads. Learn more about highway funding challenges in our “Funding the Interstate Highway System” expert set. / THF2033

States could look to local governments and other state agencies to encourage charging infrastructure inclusion in building codes and utility company build-out plans. There is also uncertainty at the moment around what federal programs might be created as a result of the draft infrastructure plan being debated by Congress.

MEDC:

Yes, absolutely. With more electric vehicles coming to market, there is an opportunity for more creative ways to finance roads while ensuring no more of a burden on electric vehicle drivers than on gasoline vehicle drivers. Some alternatives include a VMT (vehicle miles traveled)–based fee that electric vehicle owners could opt into. The fee would be based on a combination of the vehicle’s metrics and miles driven, to accurately reflect road usage and the gas taxes that gasoline vehicle owners pay. This is also a policy recommendation in the Michigan Council on Future Mobility and Electrification’s annual report, which will be published in October 2021.

In the 1950s, there were experiments with guidewire technology that enabled a car to steer itself by following a wire embedded in the pavement. Today we're experimenting with roads that can charge electric vehicles as they travel. Is it time to rethink the road itself—to connect it directly with our cars?

MDOT:

Thankfully, infrastructure continues to become “smarter” due to intelligent transportation systems, smart signals, and more—for example, the simplification of the driving environment for connected autonomous vehicles (CAVs). In 2020, MDOT established a policy to increase the width of lane lines on freeways from four to six inches to support increasing use of lane departure warning and lane keeping technologies.

Page with text and blue bars at top and bottom; black-and-white drawing showing the back of a person driving a car on a freeway (as if the viewer was in the backseat)
Our roadways evolve with our technologies. This 1956 brochure promotes the proposed Interstate Highway System—which was then a brand-new idea, not yet implemented. / THF103981

Similarly, the roadway can be evolved to optimize travel in EVs. The development of a wireless dynamic charging roadway in Michigan is a step forward in addressing range anxiety and will accelerate better understanding of infrastructure needs moving forward. This inductive vehicle charging pilot will deploy an electrified roadway system that allows electric buses, shuttles, and vehicles to charge while driving. The pilot will help to accelerate the deployment of electric vehicle infrastructure in Michigan and will create new opportunities for businesses and high-tech jobs.

Infographic with text, line drawings, and photograph in background
Some of Michigan’s “smart infrastructure.” / Infographic courtesy MDOT

MEDC:

It is time to rethink the road itself—as new advancements in mobility and electrification roll out for vehicles, it’s only natural to rethink the infrastructure these vehicles operate on. As computers got smaller and more compact over time, so did their chargers. It’s a similar thing with vehicles and their infrastructure. As vehicles get smarter and more connected, the infrastructure will have to follow suit.


Matt Anderson is Curator of Transportation at The Henry Ford, Michele Mueller is Sr. Project Manager - Connected and Automated Vehicles at Michigan Department of Transportation, and Kate Partington is Program Specialist - Office of Future Mobility and Electrification at Michigan Economic Development Corporation (MEDC). The Michigan Department of Transportation is responsible for Michigan's 9,669-mile state highway system, and also administers other state and federal transportation programs for aviation, intercity passenger services, rail freight, local public transit services, the Transportation Economic Development Fund, and others. The Michigan Office of Future Mobility and Electrification within the MEDC was created in February 2020 to bring focus and unity in purpose to state government’s efforts to foster electrification, with a vision to create a stronger state economy through safer, more equitable, and environmentally conscious transportation for all Michigan residents. See Collecting Mobility for yourself in Henry Ford Museum of American Innovation from October 23, 2021, through January 2, 2022.

autonomous technology, alternative fuel vehicles, Michigan, technology, roads and road trips, cars, by Kate Partington, by Michele Mueller, by Matt Anderson

Our new limited-engagement exhibit, Collecting Mobility: New Objects, New Stories, opening to the public October 23, 2021, takes you behind the scenes at The Henry Ford to show you how we continue to grow our vast collection of more than 26 million artifacts. One key question the exhibit asks is why we collect the items we collect. To get more insight on the artifacts on exhibit and future trends that may impact our collecting, we reached out to several of our partners. In this post from that series, our friends at the University of Michigan, donors of the Navya Autonom® driverless shuttle bus in the exhibit, tackle questions about autonomous vehicles.


The Mcity shuttle project was less about autonomous vehicle (AV) technology than it was about human psychology. Why is it important to understand our current attitudes and comfort levels with self-driving vehicles?

Self-driving vehicles promise a better world for all of us by making roads safer, reducing fuel use, and providing more equitable, more accessible mobility options to more people. None of those benefits can be realized, however, if the public does not trust fully automated vehicles or is afraid to ride in them.

When the Mcity Driverless Shuttle launched in June 2018, consumer trust in automated vehicles was declining in the wake of two fatal crashes involving partially automated vehicles in Arizona and California. Mcity wanted to better understand how consumer attitudes about self-driving vehicles might be affected if they were able to experience the technology first-hand.

Squat blue van with large glass windows all the way around and doors slid open; text and graphics on side
Navya Autonom® Driverless Shuttle Bus, used on the University of Michigan's North Campus and Mcity Test Facility, 2017, now in the collections of The Henry Ford and on exhibit in Collecting Mobility in Henry Ford Museum of American Innovation until January 2, 2022. / THF188013


Mcity worked with global market research firm J.D. Power to survey shuttle riders and non-riders—bicyclists, pedestrians, drivers of other vehicles—about their experience. By the time Mcity’s research wrapped up in December 2019, consumer sentiment nationally remained weak, according to separate surveys published in early 2020 by AAA and J.D. Power. But Mcity Driverless Shuttle survey results showed that 86 percent of riders trusted the technology after riding in the shuttle, as did 67 percent of nonriders surveyed.

Understanding the role of public trust and acceptance is essential to widespread adoption of new mobility technologies.

Self-driving cars may be the most disruptive mobility technology since the car itself. They will affect every aspect of our century-long relationship with the automobile. What can we do to ease the transition?

We must help consumers better understand the potential of this disruptive technology to improve the quality of their day-to-day life, as well as society as a whole. One way to do that is through exhibits like Collecting Mobility at The Henry Ford.

What we did not have at the dawn of the automotive age a century ago was the myriad ways to communicate that are at our fingertips today. On-demand multimedia content produced and shared by industry, government, academia, media, and other organizations teaches the public about self-driving technologies and their risks and benefits as they evolve, helping to smooth the transition to a new way of moving people and goods.

Continue Reading

communication, research, technology, by Greg McGuire, by Matt Anderson, cars, autonomous technology

Museum display with open car with mannequin behind wheel; other displays visible nearby
The original “Sweepstakes,” on exhibit in Driven to Win: Racing in America in Henry Ford Museum of American Innovation.


Auto companies often justify their participation in auto racing by quoting the slogan, “Win on Sunday, sell on Monday.” When Henry Ford raced in “Sweepstakes,” it was a case of win on Sunday to start another company on Monday. On October 10, 2021, we commemorate the 120th anniversary of the race that changed Ford’s life—and ultimately changed the course of American automotive history.

In the summer of 1901, things were not going well for Henry. His first car company, the Detroit Automobile Company, had failed, and his financial backers had doubts about his talents as an engineer and as a businessman. Building a successful race car would reestablish his credibility.

Ford didn’t work alone. His principal designer was Oliver Barthel. Ed “Spider” Huff worked on the electrical system, Ed Verlinden and George Wettrick did the lathe work, and Charlie Mitchell shaped metal at the blacksmith forge. The car they produced was advanced for its day. The induction system was a rudimentary form of mechanical fuel injection, patented by Ford, while the spark plugs may have been the first anywhere to use porcelain insulators. Ford had the insulators made by a Detroit dentist.

Side view of very basic open automobile
1901 Ford "Sweepstakes" Race Car. / THF90168

The engine had only two cylinders, but they were huge: bore and stroke were seven inches each. That works out to a displacement of 538 cubic inches; horsepower was estimated at 26. Ford and Barthel claimed the car reached 72 miles per hour during its road tests. That doesn’t sound impressive today, but in 1901, the official world speed record for automobiles was 65.79 miles per hour.

Ford entered the car in a race that took place on October 10, 1901, at a horse racing track in Grosse Pointe, Michigan. The race was known as a sweepstakes, so “Sweepstakes” was the name that Ford and Barthel gave their car. Henry’s opponent in the race was Alexander Winton, who was already a successful auto manufacturer and the country’s best-known race driver. No one gave the inexperienced, unknown Ford a chance.

When the race began, Ford fell behind immediately, trailing by as much as 300 yards. But Henry improved his driving technique quickly, gradually cutting into Winton’s lead. Then Winton’s car developed mechanical trouble, and Ford swept past him on the main straightaway, as the crowd roared its approval.

Early open automobile on street with one man behind wheel and another crouching on running board
Henry Ford behind the wheel of his first race car, the 1901 "Sweepstakes" racer, on West Grand Boulevard in Detroit, with Ed "Spider" Huff kneeling on the running board. / THF116246

Henry’s wife, Clara, described the scene in a letter to her brother: “The people went wild. One man threw his hat up and when it came down he stamped on it. Another man had to hit his wife on the head to keep her from going off the handle. She stood up in her seat ... screamed ‘I’d bet $50 on Ford if I had it.’”

Henry Ford’s victory had the desired effect. New investors backed Ford in his next venture, the Henry Ford Company. Yet he was not home free. He disagreed with his financiers, left the company in 1902, and finally formed his lasting enterprise, Ford Motor Company, in 1903.

Ford sold “Sweepstakes” in May of 1902, but eventually bought it back in the 1930s. He had a new body built to replace the original, which had been damaged in a fire, and he displayed the historic vehicle in Henry Ford Museum of American Innovation. Unfortunately, Ford did not keep good records of his restoration, and over time, museum staff came to believe that the car was not an original, but a replica. It was not until the approach of the 1901 race’s 100th anniversary that the car was closely examined and its originality verified. Using “Sweepstakes” as a pattern, Ford Motor Company built two running replicas to commemorate the centennial of its racing program in 2001.

Ford gifted one of the replicas to us in 2008. That car is a regular feature at our annual Old Car Festival in September. Occasionally, it comes out for other special activities. We recently celebrated the 120th anniversary of the 1901 race by taking the replica to the inaugural American Speed Festival at the M1 Concourse in Pontiac, Michigan. The car put on a great show, and it even won another victory when it was awarded the M1 Concourse Prize as a festival favorite.

Man sits in boxy open early car on racetrack; a woman stands nearby being filmed by a cameraman
The “Sweepstakes” replica caught the attention of Speed Sport TV pit reporter Hannah Lopa at the 2021 American Speed Festival. / Photo courtesy Matt Anderson

The original car, one of the world’s oldest surviving race cars, is proudly on display at the entrance to our exhibit Driven to Win: Racing in America presented by General Motors. You can read more about how we developed that display in this blog post.

Specifications

Frame: Ash wood, reinforced with steel plates

Wheelbase: 96 inches
Weight: 2,200 pounds
Engine: 2-cylinder, horizontally opposed, water cooled
Bore: 7 inches; Stroke: 7 inches; Displacement: 538 cubic inches (8.8 liters)
Horsepower: 26 @ 900 rpm (estimated)
Drivetrain: 2-speed planetary transmission, with reverse; chain drive to rear axle

 


Bob Casey is Former Curator of Transportation at The Henry Ford. This post was adapted from our former online series “Pic of the Month,” with additional content by Matt Anderson, Curator of Transportation at The Henry Ford.


Additional Readings:

20th century, 1900s, 21st century, 2020s, racing, race cars, race car drivers, Michigan, making, Henry Ford Museum, Henry Ford, Driven to Win, design, cars, car shows, by Matt Anderson, by Bob Casey, #Behind The Scenes @ The Henry Ford

A 15th birthday is very special for many young women in Hispanic culture. Quinceañera, Spanish for “15 years,” marks her passage from girlhood to womanhood. Both a religious and a social event, quinceañera emphasizes the importance of family and community in the life of a young woman.

Open, tri-fold invitation with pink text on cream paper and embossed image of girl in a tiered gown
Invitation to Detroiter Maritza Garza’s quinceañera mass and reception, April 4, 1992. / THF91662

Historically, the quinceañera signified that a girl—having been taught skills like cooking, weaving, and childcare—was ready for marriage. The modern celebration is more likely to signal the beginning of formal dating. Today, the custom of quinceañera remains strongest in Mexico, where it likely originated. It is also celebrated not only in the United States, but also in Spanish-speaking countries in the Americas.

Woman with long dark hair and glasses wearing pink gown with tiers and white lace holds an elaborate flower arrangement
Maritza Garza in her formal quinceañera gown. She selected a dress in a traditional pastel color, pink, purchasing it at a local bridal shop in Detroit. / THF91665

Diamond or rhinestone tiara with swirling design
Quinceañera tiara, 2011. / THF150077

An occasion shared with family and friends, the celebration is as elaborate as the family’s wishes and budget allow. The honoree wears a formal gown, along with a tiara or other hair ornament. The oldest tradition was a white dress, with other conventional choices being light pink, blue, or yellow. Now, quinceañera dresses come in many shades—from pastels to darker hues.

Two pages with pink text
Maritza Garza’s quinceañera court of honor. / THF207367

A “court” of family and friends help her celebrate her special day—the young women wear dresses that match and the young men don tuxedos.

Profile of woman in pink dress holding a bouquet of roses in a formal building (church?)
Maritza Garza during her quinceañera mass at Most Holy Redeemer Catholic Church in April 1992. Holy Redeemer is located in the heart of Detroit’s Mexicantown neighborhood. Here, masses have been offered in Spanish since 1960 for the Mexican American congregation. / THF91666

A quinceañera begins with a religious service at a Catholic church. Then comes a party with food and dancing. Dancing at the “quince” traditionally includes a choreographed waltz-type dance—one of the highlights of the evening. Toasts are often offered. Sometimes, the cutting of a fancy cake takes place. Symbolic ceremonies at this celebration may include swapping out the honoree’s flat shoes for high heels, slipped onto her feet by her father or parental figure.

Blue magazine cover with three photos of people in formal dress with decorated cars; also contains text
Quinceañera celebrations may also include a ride in a lowrider. Arising from Mexican American culture, lowriders are customized family-size cars with street-scraping suspensions and ornamental paint. / THF104135

Some girls choose to celebrate their 15th birthday in a less traditional way, perhaps with a trip abroad. Like other celebrations and rites of passage, quinceañera traditions continue to evolve.

Traditional or non-traditional, a quinceañera celebration makes a young woman feel special as she continues her journey to adulthood.


Jeanine Head Miller is Curator of Domestic Life at The Henry Ford. Many thanks to Sophia Kloc, Office Administrator for Historical Resources at The Henry Ford, for editorial preparation assistance with this post.

Michigan, Detroit, home life, childhood, women's history, Hispanic and Latino history, by Jeanine Head Miller

Long, low maroon and gold car with pinstriping in decorative pattern along side
Inside front cover detail from Technical Low Rider magazine, 1981, showing a 1976 Chevrolet  Caprice Classic. / THF206772


Some people customize their cars as a creative way of expressing cultural identity, as many lowrider builders do. Lowriding flourished in Southern California’s Mexican American working-class neighborhoods after World War II. Members of this community transformed older-model, family-size cars into stylish rides with street-scraping suspensions and ornamental paint jobs. Lowriders use style to show pride in cultural identity and to stand out from mainstream American culture.

Lowrider customizers prefer American automobiles—especially Chevrolets. The 1940s Chevy Fleetline below appeared in Technical Low Rider in 1981. 

Woman sits on fender of large, bulbous white car with gray top
Page 57, Technical Low Rider Magazine, 1981. / THF104132

Customizers often lavish as much creativity and as many resources inside their lowriders as outside.

Car interior upholstered entirely in thick, mustard-yellow tufted velvet; a chandelier hangs from ceiling
Detail from page 23, Technical Low Rider Magazine, 1981. / THF104134

The late-1970s lowrider shown below has a hidden hydraulic system to lower the car—or quickly raise it to legal ride height to avoid being ticketed. 

Page with text and two views of long, blue car with decorative painting on sides and trunk
Page 55, Technical Low Rider Magazine, 1981. / THF104133

Contests let lowrider owners show off the hydraulic technology that makes their cars “hop” and “dance.” The remote-controlled model shown below is based on a 1964 Chevrolet Impala lowrider. It’s equipped with a height-adjustable suspension that makes the car appear to "dance" up and down as it travels.

Green toy car attached to black rod-like control, along with box with text, image of same car, and black and purple pattern of lightning bolts
Dancin' 1964 Chevy Impala Model, circa 1999. / THF151539

Lowriders traditionally cruise for anniversaries, weddings, and quinceañera celebrations—a 15th-birthday observance in Hispanic culture.

Magazine cover with text and several photos of cars and people in formal dress
Low Rider Magazine, Wedding/Quinceanera Issue, October 1979. / THF104135

Lowrider enthusiasts often form clubs and enjoy cruising together. These collectible toys are models of some of the everyday vehicles they have transformed into stylish showstoppers.

GIF cycling through three images of toy cars, all with decorative detailing
1964 Chevrolet Impala, 1976 Chevrolet Monte Carlo, and 1984 Cadillac de Ville lowrider collectibles, 2000–2003. / THF150054, THF150052, and THF150053


This post was adapted from an exhibit label in Henry Ford Museum of American Innovation.

California, 21st century, 20th century, toys and games, popular culture, making, Hispanic and Latino history, cars

Collage poster with text and image of two women in a landscape with a woven circle or basket behind them
Poster, "Together, We Are Power," 2020 / THF626365


In honor of Indigenous Peoples’ Day, The Henry Ford would like to share our recent acquisition of two posters. Designed by artist Mer Young for the Amplifier Foundation in partnership with Nia Tero and IllumiNative, these graphics were created in support of a land stewardship campaign and timed to drive participation of the Native American vote during the 2020 presidential election.

Mer Young (Hidalgo Otomi and Mescalero-Chiricahau Apache) is an artist focusing on narratives that “inspire, celebrate and elevate repressed indigenous, first nations and native cultures and women of color” as well as issues related to immigration rights, equality, and the Black Lives Matter movement. These posters use digital collage techniques and were designed to be activated with augmented reality.

Collage poster with image of two women in landscape with circular graphic pattern behind them
Poster, "Vote in Solidarity," 2020 / THF626361

In 1992, Indigenous Peoples’ Day was officially adopted in Berkeley, California, as an alternative to Columbus Day. Cities across the country have since adopted the holiday, including several in Michigan. This counter-celebration addresses the controversy over the “discovery” of the Americas by Christopher Columbus—and the suffering of First Peoples under the violence of European colonization and settlement that followed. Indigenous Peoples’ Day is a way to express solidarity and acknowledge this history while celebrating Native American history, culture, and communities.

For culturally sensitive activities and resources for Indigenous Peoples’ Day, check out “Unlearning Columbus Day Myths” from the Smithsonian National Museum of the American Indian.


Kristen Gallerneaux (Métis-Wendat) is Curator of Communications & Information Technology at The Henry Ford.

21st century, 2020s, Indigenous peoples, voting, technology, posters, by Kristen Gallerneaux, art

Large glass display case containing a wooden trunk and a number of garments and other pieces of apparel
Our current
What We Wore exhibit in Henry Ford Museum of American Innovation features clothing from generations of one family. / THF188474

In 1935, 59-year-old Louise Hungerford sent a trunk full of clothing to Henry Ford—clothing that had belonged to her mother’s family, the Mitchells, who had lived in the village of Port Washington, New York, for six generations.

Page of hand-written (cursive) letter
Page of hand-written (cursive) letter
Letter from Louise Hungerford to Henry Ford, September 9, 1935. / THF624791 and THF624793

Ford had opened his museum to the public only two years before. Louise Hungerford was one of the hundreds of people who sent letters to Henry Ford at this time offering to give or sell him objects for his museum. The clothing she sent remains among the oldest in The Henry Ford’s collection.

Map of Port Washington with irregularly shaped area outlined in red
Map of Port Washington in 1873—the Mitchell home is highlighted in red. / (Not from the collections of The Henry Ford.)

The Mitchell Family and Port Washington


Since the 1690s, the Mitchells had been respected members of the Long Island community of Port Washington as it evolved from farming to shellfishing and construction sand and gravel. In the early 1800s, Port Washington (then called Cow Neck) provided garden produce for New York City residents and hay for their horses—all shipped to the city by packet ships. By the mid-1800s, oystering was profitable in the area. After the Civil War, the sand and gravel industry took hold, providing construction materials for the growing city of New York.

By the early 1900s, the village had become a summer resort and home for the wealthy. The Long Island Railroad reached Port Washington in 1898, providing convenient transportation to the area from New York City. The city’s Knickerbocker Yacht Club moved to Port Washington in 1907. By the mid-1930s—when Louise Hungerford sent Henry Ford the letter and trunk full of family clothing--Port Washington’s quaint homes and wooded hills had been giving way to prestigious residences and sailboats for over 30 years.

Town with two-story wooden houses by a body of water; also contains text
People wave from long, wooden dock over a body of water with houses visible along shoreline behind them; also contains text
Postcard views of Port Washington sent by tourists to family or friends about 1910. /
THF624985 and THF624981

Mitchell family occupations evolved through the years along with Port Washington’s local economy: farmer, ship’s captain, stagecoach operator, land developer, highway commissioner, librarian.

Preserving the Past


The Mitchell family had changed with the times—yet hung onto vestiges of its past. Family clothing had been stored for over a century, first in Manhasset Hall, the house that had been home to the Mitchells since the late 1760s. Generations of the extended Mitchell family were born there, grew up there, married there, raised families there, and died there.

Large, two-story wooden house with wrap-around porch; also contains printed and hand-written text
By the early 1900s, the Mitchell family home—added onto over the years before being sold out of the family—offered accommodations to tourists. The house was later torn down to make way for a housing development. / THF624821

When the Mitchell home was sold in 1887, the trunk full of clothing remained in the family. By the early 1900s, it was probably kept by Louise Hungerford’s aunt, Wilhelmina, and then by Louise’s mother, Mary. Wilhelmina had remained in Port Washington, helping establish the town’s first library and serving as its first librarian.

Brick building with sloping lawn and steps down to sidewalk in front; also contains text
Port Washington Public Library, where Wilhelmina Mitchell served as the first librarian. / THF624979

Wilhelmina’s sister, Mary Hungerford, lived most of her adult life in Watertown, New York, after her marriage to produce dealer Egbert Hungerford. But, sometime before 1930, Mary—now a widow—returned to her hometown of Port Washington, along with her daughter, Louise. Wilhelmina Mitchell passed away in 1927; Mary Mitchell Hungerford died in 1933. Fewer Mitchell family members remained in Port Washington to cherish these tucked-away pieces of the family’s past. So Louise Hungerford wrote her letter, offering the trunk and its contents to Henry Ford for his museum.

Looking Inside


Wooden trunk with open arched lid
Trunk, 1860-1880. / THF188046

What clothing was in the Mitchell family trunk? Once-fashionable apparel. Garments outgrown. Clothing saved for sentimental reasons—perhaps worn on a special occasion or kept in someone’s memory. Everything was handsewn; much was probably homemade.

Louise Hungerford—if she knew—didn’t provide the names of the family members who had once worn these items, and Henry Ford’s assistants didn’t think to ask. For a few garments, though, we made some guesses based on recent research. For many, the mystery remains.

Pink fabric slippers with small ruffle on top of body
Women’s Slippers, about 1830. / THF156005

Flat-soled slippers were the most common shoe type worn by women during the first part of the 1800s. The delicate pair above might have been donned for a special occasion. Footwear did not yet come in rights and lefts—the soles were straight.

Pale pink dress with empire waist; slight puff at top of long sleeves; tiers at bottom of body
Child’s Dress, 1810-1825. / THF28528

The high-waisted style and pastel silk fabric of the child’s dress depicted above mirror women’s fashions of the 1810s. This dress was probably worn with pantalettes (long underwear with a lace-trimmed hem) by a little girl—though a boy could have worn it as well. Infants and toddlers of both genders wore dresses at this time. The tucks could be let down as the child grew.

Simple brown booties with seam up center and laces on inseam
Woman’s Gaiters, 1830-1860. / THF31093

Gaiters—low boots with fabric uppers and leather toes and heels—were very popular as boots became the footwear of choice for walking. To give the appearance of daintiness, shoes were made on narrow lasts, a foot-shaped form. By the late 1850s, boots made entirely of leather were the most popular.

Long-sleeved, floor-length dress gathered at waist and neck, made of brown floral material
Dress, 1780-1795. / THF29521

By the late 1700s, women’s fashions were less full and less formal than earlier. The side seams of this dress are split—allowing entry into a pair of separate pockets that would be tied around the waist. The dress, lined with a different fabric, appears to be reversible. The dress above was possibly worn by Rebecca Hewlett Mitchell, who died in 1790—or by her sister Jane Hewlett, who became the second wife of Rebecca’s husband, John Mitchell, Jr. 

Two pear-shaped patchwork pockets connected by a cord or string
Pockets, 1790-1810. / THF30851

In the 1700s and early 1800s, women’s gowns didn’t have pockets stitched in. Instead, women wore separate pockets that tied around their waist. A woman put her hand through a slit in her skirt to pull out what she needed. This pocket has the initials JhM cross-stitched on the back. They were possibly owned by John Mitchell, Jr.’s second wife, Jane Hewlett Mitchell (born 1749), or by his unmarried daughter, Jane H. Mitchell (born 1785).

Dark gray suit with simple pants and a jacket with several rows of large black buttons converging at the waist in a W shape
Boy’s Eton Suit, 1820-1830. / THF28536

During the early 1800s, boys wore Eton suits—short jackets with long, straight trousers—for school or special occasions. The trousers buttoned to a shirt or suspenders under the short jacket. This one, made of silk, was a more expensive version, possibly worn by Charles W. Mitchell, who was born in 1816.

White sacks filled with something and gathered with ribbon at necks
Sleeve Puffs, about 1830. / THF188039

The enormous, exaggerated sleeves of 1830s women’s fashion needed something to hold them up. Sleeve plumpers did the trick, often in the form of down-filled pads like these that would tie on at the shoulder under the dress.

Beige corset with wide shoulder straps
Corset, 1830-1840. / THF30853

A corset was a supportive garment worn under a woman’s clothing. A busk—a flat piece of wood, metal, or animal bone—slid into the fabric pocket in front to keep the corset straight, while also ensuring an upright posture and a flatter stomach.

Simple light blue quilted skirt
Quilted Petticoat, 1760-1780. / THF30943

In the mid-to-late 1700s, women’s gowns had an open front or were looped up to reveal the petticoat underneath. Fashionable quilted petticoats usually had decorative stitching along the hemline. Women might quilt their own petticoats or buy one made in England—American merchants imported thousands during this time.

Brown pants with a houndstooth or checked pattern
Man’s Trousers, 1820-1850. / THF30007

These trousers appear to have been worn on an everyday basis for work. Both knees, having seen a lot of wear, have careful repairs.

Brown shoes with leather at bottom and quilted fabric above, tied with laces
Woman’s House Slippers, 1840-1855. / THF156001

The quilted fabric on these house slippers made them warmer—quite welcome during cold New York winters in a house heated only by fireplaces or cast-iron stoves.

Off-white bonnet with rows of boning and shirred fabric between them; ruffle at neck
Calash Bonnet, 1830-1839. / THF188043

Collapsible calash bonnets were named after the folding tops of horse-drawn carriages. These bonnets had been popular during the late 1700s with a balloon-shaped hood that protected the elaborate hairstyles then in fashion. Calash bonnets returned in the 1820s and 1830s, this time following current fashion—a small crown at the back of the head and an open brim. The ruffle at the back shaded the neck.

When Henry Ford was collecting during the mid-1900s, many of the objects were gathered from New England or the Midwest—often from people of similar backgrounds to his. We are looking to make our clothing collection and the stories it tells more inclusive and diverse. Do you have clothing you would like us to consider for The Henry Ford’s collection? Please contact us.



Jeanine Head Miller is Curator of Domestic Life at The Henry Ford. Many thanks to Joan DeMeo Lager of the Cow Neck Peninsula Historical Society, Phyllis Sternemann, church historian at Christ Church Manhasset, and Gil Gallagher, curatorial volunteer at The Henry Ford, for meticulous research that revealed the story of generations of Port Washington Mitchells. Thanks also to Sophia Kloc, Office Administrator for Historical Resources at The Henry Ford, for editorial preparation assistance with this post.

New York, 19th century, 18th century, women's history, What We Wore, home life, Henry Ford Museum, fashion, by Jeanine Head Miller